99 research outputs found

    ALKALI-CONTAINING MINERALS WITHIN MELT INCLUSIONS IN OLIVINE OF MANTLE XENOLITHS FROM BULTFONTEIN KIMBERLITE PIPE (KAAPVAAL CRATON): EVIDENCE ON HIGH CONCENTRATIONS OF ALKALIS IN KIMBERLITE MELTS

    Get PDF
    The study reports the mineral assemblage of the crystallized secondary melt inclusions in the olivine of sheared peridotites xenoliths from Bultfontein kimberlite pipe (Kaapvaal Craton, South Africa). In this type of xenoliths, the inclusions may correspond in composition to primitive kimberlite melts related to the magmatism that formed the Bultfontein pipe. Among 32 daughter phases within the inclusions, there are both ordinary rock-forming and minor minerals for kimberlites (silicates, carbonates, oxides) and "exotic" (alkali carbonates, sulfates, and chlorides) for these rocks. In the inclusions, 20 alkali-containing minerals are present, 12 of which are Na-bearing and – 4 Na-K-bearing. For instance, the inclusions contain nyerereite, K-nyerereite, shortite, gregoryite, eitelite, bradleyite, northupite, tychite, burkeite, aphthitalite, arcanite, thenardite, sylvine, and halite. On the basis of these results, the kimberlite melt of the Bultfontein pipe had Na-specification rather than Ca or K ones. The carbonates, sulfates, and chlorides significantly prevail over silicates, which content (serpentine + micas) does not exceed 16 vol. %, in the inclusions.The obtained results pose fundamental questions regarding the petrogenesis of kimberlites: (i) initial sodium concentrations in kimberlite melts and rocks, which are "traditionally" considered as very low; (ii) composition and ratio of volatile components in kimberlite magmas, namely, the initial contents of both CO2 and the components such as Cl, SO3 and H2O; (iii) primary magmatic mineral association of kimberlite rocks, which loses diverse alkali-containing minerals, but mica, due to serpentinization process

    Uakitite, VN, a new mononitride mineral from uakit iron meteorite (IIAB)

    Get PDF
    Uakitite was observed in small troilite–daubréelite (±schreibersite) inclusions (up to 100 µm) and in large troilite–daubréelite nodules (up to 1 cm) in Fe-Ni-metal (kamacite) of the Uakit iron meteorite (IIAB), Republic of Buryatia, Russia. Such associations in the Uakit meteorite seemed to form due to high-temperature (>1000 °C) separation of Fe-Cr-rich sulfide liquid from Fe-metal melt. Most inclusions represent alternation of layers of troilite and daubréelite, which may be a result of solid decay of an initial Fe-Cr-sulfide. These inclusions are partially resorbed and mainly located in fissures of the meteorite, which is now filled with magnetite, and rarely other secondary minerals. Phase relations indicate that uakitite is one of the early minerals in these associations. It forms isometric (cubic) crystals (in daubréelite) or rounded grains (in schreibersite). The size of uakitite grains is usually less than 5 µm. It is associated with sulfides (daubréelite, troilite, grokhovskyite), schreibersite and magnetite. Carlsbergite CrN, a more abundant nitride in the Uakit meteorite, was not found in any assemblages with uakitite. Physical and optical properties of uakitite are quite similar to synthetic VN: yellow and transparent phase with metallic luster; Mohs hardness: 9–10; light gray color with a pinky tint in reflected light; density (calc.) = 6.128 g/cm3. Uakitite is structurally related to the osbornite group minerals: carlsbergite CrN and osbornite TiN. Structural data were obtained for three uakitite crystals using the electron backscatter diffraction (EBSD) technique. Fitting of the EBSD patterns for a synthetic VN model (cubic, Fm-3m, a = 4.1328(3) Å; V = 70.588(9) Å3; Z = 4) resulted in the parameter MAD = 0.14–0.37° (best-good fit). Analytical data for uakitite (n = 54, in wt. %) are: V, 71.33; Cr, 5.58; Fe, 1.56; N, 21.41; Ti, below detection limit (<0.005). The empirical formula (V0.91Cr0.07Fe0.02)1.00N1.00 indicates that chromium incorporates in the structure according to the scheme V3+ → Cr3+ (up to 7 mol. % of the carlsbergite end-member). © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Foundation for Basic Research, RFBR: 17-05-00129, IGM SD 0330-2016-0005Government Council on Grants, Russian FederationMinistry of Science and Higher Education of the Russian FederationFunding: The investigations were partly supported by RFBR (grant 17-05-00129) and the State assignment project (IGM SD 0330-2016-0005). This work was also supported by the Initiative Project of Ministry of Science and Higher Education of the Russian Federation and by Act 211 of the Government of the Russian Federation, agreement no. 02.A03.21.0006

    Nataliakulikite, Ca4Ti2(Fe3+,fe2+)(Si,fe3+,al)o11, a new perovskite-supergroup mineral from hatrurim basin, negev desert, Israel

    Get PDF
    Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, is a mineral intermediate between perovskite CaTiO3 and brownmillerite Ca2(Fe,Al)2O5. It was discovered as a minor mineral in a high-temperature pyrometamorphic larnite-gehlenite rock at the Nahal Morag Canyon of the Hatrurim Basin, Israel. Nataliakulikite is associated with larnite, flamite, gehlenite, magnesioferrite, Fe3+-rich perovskite, fluorapatite, barite, Hashemite, and retrograde phases (afwillite, hillebrandite, portlandite, calcite, ettringite, hydrogarnet, and other hydrated Ca-silicates). The mineral forms brown subhedral or prismatic grains (up to 20 µm) and their intergrowths (up to 50 µm). Its empirical formula (n = 47) is (Ca3.992Sr0.014U0.004)(Ti1.933Zr0.030Nb0.002) (Fe3+0.610Fe2+0.405Cr0.005Mn0.005)(Si0.447Fe3+0.337Al0.216)O11 and shows Si predominance in tetrahedral site. The unit-cell parameters (HRTEM data) and space group are: a = 5.254, b = 30.302, c = 5.488 Å, V = 873.7 Å3, Pnma, Z = 4. These dimensions and Electron backscatter diffraction (EBSD) data strongly support the structural identity between nataliakulikite and synthetic Ca4Ti2Fe3+2O11 (2CaTiO3·Ca2Fe3+2O5), an intermediate compound in the system CaTiO3-Ca2Fe3+2O5. In general, this mineral is a Si-Fe2+-rich natural analog of synthetic Ca4Ti2Fe3+2O11. The X-ray powder diffraction data (CuKα-radiation), calculated from unit-cell dimensions, show the strongest lines {d [Å], (Icalc)} at: 2.681(100), 1.898(30), 2.627(26), 2.744(23), 1.894(22), 15.151(19), 1.572(14), 3.795(8). The calculated density is 4.006 g/cm3. The crystal structure of nataliakulikite has not been refined because of small sizes of grains. The Raman spectrum shows strong bands at 128, 223, 274, 562, and 790 cm−1. Nataliakulikite from the Hatrurim Basin crystallized under the conditions of combustion metamorphism at high temperatures (1160–1200◦C) and low pressures (HT-region of the spurrite-merwinite facies). © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 0330-2016-0004, 17-17-01056, IGM SD 0330-2016-0005Ben-Gurion University of the Negev, BGUThis research was funded by the Russian Science Foundation, grant number 17-17-01056. The field work and sample collection was partly supported the State assignment projects (IGM SD 0330-2016-0005, 0330-2016-0004). Acknowledgments: The authors would like to thank M.V. Khlestov (IGM SD RAS) for technical assistance at SEM studies. Yevgeny Vapnik (Ben-Gurion University, Beer-Sheva, Israel) is thanked for providing of fruitful field trips in the Hatrurim Basin in 2004 and 2019. The last version of the manuscript was improved through comments and suggestions by T. Perepelova (IGM, Novosibirsk). We are highly appreciative of the valuable comments and suggestions of two anonymous reviewers

    History and current state of analytical research at the Institute of the Earth’s Crust SB RAS: Centre for geodynamics and geochronology

    Get PDF
    The article discusses the history of the development of analytical research at the Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences over the past 22 years. An overview of the existing scientific equipment, current analytical techniques and some examples of their application in geological research are provided. It is shown that the availability of highly qualified personnel and modern scientific equipment at the Center for Geodynamics and Geochronology allows, both entirely on its base and in cooperation with other Russian and foreign organizations, to conduct state of the art research with the publication of results in leading international journals

    THE “CLINOPYROXENE” PALEOGEOTHERM BENEATH THE OBNAZHENNAYA KIMBERLITE PIPE AND THIСKNESS OF LITHOSPHERE UNDER THE KUOYKA FIELD (SIBERIAN CRATON, YAKUTIA)

    Get PDF
    The mantle paleogeotherm under the Obnazhennaya kimberlite pipe (Kuoika field, Siberian craton) was reconstructed using the chemical composition of clinopyroxene xenocrystals and the FITPLOT program. The lithosphere thickness 187–193 km and surface heat flow 41–42 mW/m2 were measured for the Obnazhennaya pipe at the time of kimberlite magmatism in the Mesozoic. The lithosphere thickness was found to be much smaller than that in the central part of the Siberian craton (210–230 km), where Paleozoic diamond-bearing kimberlite pipes-deposits are located. It is however comparable to the highly diamond-bearing Kimberley field in the Kaapvaal craton (South Africa). The absence of diamonds in the pipes of the Kuoika field, but poor diamondiferous Dyanga pipe, might be associated with the more intense metasomatic alteration of the rocks within the lithospheric mantle of this region in the Mesozoic time, as compared to the central part of the Siberian craton in the Middle Paleozoic time

    ЩЕЛОЧЕСОДЕРЖАЩИЕ МИНЕРАЛЫ ИЗ РАСПЛАВНЫХ ВКЛЮЧЕНИЙ В ОЛИВИНАХ МАНТИЙНЫХ КСЕНОЛИТОВ ИЗ КИМБЕРЛИТОВ ТРУБКИ БУЛТФОНТЕЙН (КРАТОН КААПВААЛЬ): СВИДЕТЕЛЬСТВО ВЫСОКИХ КОНЦЕНТРАЦИЙ ЩЕЛОЧЕЙ В КИМБЕРЛИТОВЫХ РАСПЛАВАХ

    Get PDF
    The study reports the mineral assemblage of the crystallized secondary melt inclusions in the olivine of sheared peridotites xenoliths from Bultfontein kimberlite pipe (Kaapvaal Craton, South Africa). In this type of xenoliths, the inclusions may correspond in composition to primitive kimberlite melts related to the magmatism that formed the Bultfontein pipe. Among 32 daughter phases within the inclusions, there are both ordinary rock-forming and minor minerals for kimberlites (silicates, carbonates, oxides) and "exotic" (alkali carbonates, sulfates, and chlorides) for these rocks. In the inclusions, 20 alkali-containing minerals are present, 12 of which are Na-bearing and – 4 Na-K-bearing. For instance, the inclusions contain nyerereite, K-nyerereite, shortite, gregoryite, eitelite, bradleyite, northupite, tychite, burkeite, aphthitalite, arcanite, thenardite, sylvine, and halite. On the basis of these results, the kimberlite melt of the Bultfontein pipe had Na-specification rather than Ca or K ones. The carbonates, sulfates, and chlorides significantly prevail over silicates, which content (serpentine + micas) does not exceed 16 vol. %, in the inclusions.The obtained results pose fundamental questions regarding the petrogenesis of kimberlites: (i) initial sodium concentrations in kimberlite melts and rocks, which are "traditionally" considered as very low; (ii) composition and ratio of volatile components in kimberlite magmas, namely, the initial contents of both CO2 and the components such as Cl, SO3 and H2O; (iii) primary magmatic mineral association of kimberlite rocks, which loses diverse alkali-containing minerals, but mica, due to serpentinization process.Приведены результаты изучения дочерней минеральной ассоциации вторичных раскристаллизованных расплавных включений в оливинах ксенолитов деформированных перидотитов из кимберлитов трубки Бултфонтейн (кратон Каапвааль, Южная Африка). Включения в таком типе ксенолитов по составу могут соответствовать примитивным кимберлитовым жидкостям, непосредственно связанным с магматизмом, сформировавшим трубку Бултфонтейн. Среди 32 идентифицированных во включениях дочерних фаз были выявлены как обычные породообразующие и второстепенные для кимберлитов минералы (силикаты, карбонаты, оксиды), так и «экзотические» для этих пород щелочные карбонаты, сульфаты и хлориды. Во включениях диагностировано 20 щелочесодержащих минералов, из которых 12 являются Na-содержащими и 4 – Na-K-содержащими. В частности, во включениях присутствуют ньеререит, К-ньеререит, шортит, грегориит, эйтелит, брэдлиит, нортупит, тихит, беркеит, афтиталит, арканит, тенардит, сильвин и галит. Согласно полученным результатам, кимберлитовый расплав трубки Бултфонтейн, вероятно, имел Na-спецификацию, а не Ca или K. Карбонаты, сульфаты и хлориды существенно преобладают над силикатами во включениях, содержание которых (серпентин + слюды) не превышает 16 об. %.Полученные результаты ставят ряд фундаментальных вопросов в отношении петрогенезиса кимберлитов, в том числе: 1) о первоначальных концентрациях натрия как в кимберлитовых расплавах, так и в породах, которые «традиционно» считаются очень низкими; 2) о составе и соотношении летучих компонентов в кимберлитовых магмах, а именно о первоначальных содержаниях не только СO2, но и таких компонентов, как Сl, SO3 и H2O; 3) о первично-магматической минеральной ассоциации кимберлитовых пород, которая в результате серпентинизации, за исключением слюд, теряет подавляющую часть щелочесодержащих минералов
    corecore