13,181 research outputs found

    Structure/permeability relationships of silicon-containing polyimides

    Get PDF
    The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed

    Molecular Realism in Default Models for Information Theories of Hydrophobic Effects

    Get PDF
    This letter considers several physical arguments about contributions to hydrophobic hydration of inert gases, constructs default models to test them within information theories, and gives information theory predictions using those default models with moment information drawn from simulation of liquid water. Tested physical features include: packing or steric effects, the role of attractive forces that lower the solvent pressure, and the roughly tetrahedral coordination of water molecules in liquid water. Packing effects (hard sphere default model) and packing effects plus attractive forces (Lennard-Jones default model) are ineffective in improving the prediction of hydrophobic hydration free energies of inert gases over the previously used Gibbs and flat default models. However, a conceptually simple cluster Poisson model that incorporates tetrahedral coordination structure in the default model is one of the better performers for these predictions. These results provide a partial rationalization of the remarkable performance of the flat default model with two moments in previous applications. The cluster Poisson default model thus will be the subject of further refinement.Comment: 5 pages including 3 figure

    Tsunamis, Viscosity and the HBT Puzzle

    Full text link
    The equation of state and bulk and shear viscosities are shown to be able to affect the transverse dynamics of a central heavy ion collision. The net entropy, along with the femtoscopic radii are shown to be affected at the 10-20% level by both shear and bulk viscosity. The degree to which these effects help build a tsunami-like pulse is also discussed.Comment: Contribution to SQM 2007 in Levoca, Slovaki

    Final state interactions in two-particle interferometry

    Full text link
    We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".Comment: 12 pages RevTeX, 2 ps-figures included, submitted to Phys. Rev.

    Towards the 3D-Imaging of Sources

    Full text link
    Geometric details of a nuclear reaction zone, at the time of particle emission, can be restored from low relative-velocity particle-correlations, following imaging. Some of the source details get erased and are a potential cause of problems in the imaging, in the form of instabilities. These can be coped with by following the method of discretized optimization for the restored sources. So far it has been possible to produce 1-dimensional emission source images, corresponding to the reactions averaged over all possible spatial directions. Currently, efforts are in progress to restore angular details.Comment: Talk given at the Int. Workshop on Hot and Dense Matter in Relativistic Heavy Ion Collisions, March 24-27, 2004, Budapest; 10 pages, 6 figure

    Isospin Fluctuations from a Thermally Equilibrated Hadron Gas

    Full text link
    Partition functions, multiplicity distributions, and isospin fluctuations are calculated for canonical ensembles in which additive quantum numbers as well as total isospin are strictly conserved. When properly accounting for Bose-Einstein symmetrization, the multiplicity distributions of neutral pions in a pion gas are significantly broader as compared to the non-degenerate case. Inclusion of resonances compensates for this broadening effect. Recursion relations are derived which allow calculation of exact results with modest computer time.Comment: 10 pages, 5 figure

    The Quark-Gluon Plasma in a Finite Volume

    Full text link
    The statistical mechanics of quarks and gluons are investigated within the context of the canonical ensemble. Recursive techniques are developed which enforce the exact conservation of baryon number, total isospin, electric charge, strangeness, and color. Bose and Fermi-Dirac statistics are also accounted for to all orders. The energy, entropy and particle number densities are shown to be significantly reduced for volumes less than 5 cubic fm.Comment: 8 pages, 3 figure
    corecore