3,375 research outputs found

    Anderson Transition in Disordered Graphene

    Full text link
    We use the regularized kernel polynomial method (RKPM) to numerically study the effect disorder on a single layer of graphene. This accurate numerical method enables us to study very large lattices with millions of sites, and hence is almost free of finite size errors. Within this approach, both weak and strong disorder regimes are handled on the same footing. We study the tight-binding model with on-site disorder, on the honeycomb lattice. We find that in the weak disorder regime, the Dirac fermions remain extended and their velocities decrease as the disorder strength is increased. However, if the disorder is strong enough, there will be a {\em mobility edge} separating {\em localized states around the Fermi point}, from the remaining extended states. This is in contrast to the scaling theory of localization which predicts that all states are localized in two-dimensions (2D).Comment: 4 page

    Foci of Schistosomiasis mekongi, Northern Cambodia: II. Distribution of infection and morbidity.

    Get PDF
    In the province of Kracheh, in Northern Cambodia, a baseline epidemiological survey on Schistosoma mekongi was conducted along the Mekong River between December 1994 and April 1995. The results of household surveys of highly affected villages of the East and the West bank of the river and of school surveys in 20 primary schools are presented. In household surveys 1396 people were examined. An overall prevalence of infection of 49.3% was detected by a single stool examination with the Kato-Katz technique. The overall intensity of infection was 118.2 eggs per gram of stool (epg). There was no difference between the population of the east and west shore of the Mekong for prevalence (P = 0.3) or intensity (P = 0.9) of infection. Severe morbidity was very frequent. Hepatomegaly of the left lobe was detected in 48.7% of the population. Splenomegaly was seen in 26.8% of the study participants. Visible diverted circulation was found in 7.2% of the population, and ascites in 0.1%. Significantly more hepatomegaly (P = 0.001), splenomegaly (P = 0. 001) and patients with diverted circulation (P = 0.001) were present on the west bank of the Mekong. The age group of 10-14 years was most affected. The prevalence of infection in this group was 71.8% and 71.9% in the population of the West and East of the Mekong, respectively. The intensity of infection was 172.4 and 194.2 epg on the West and the East bank, respectively. In the peak age group hepatomegaly reached a prevalence of 88.1% on the west and 82.8% on the east bank. In the 20 schools 2391 children aged 6-16 years were examined. The overall prevalence of infection was 40.0%, ranging from 7.7% to 72.9% per school. The overalls mean intensity of infection was 110.1 epg (range by school: 26.7-187.5 epg). Both prevalence (P = 0.001) and intensity of infection (P = 0.001) were significantly higher in schools on the east side of the Mekong. Hepatomegaly (55.2%), splenomegaly (23.6%), diverted circulation (4. 1%), ascites (0.5%), reported blood (26.7%) and mucus (24.3%) were very frequent. Hepatomegaly (P = 0.001), splenomegaly (P = 0.001), diverted circulation (P = 0.001) and blood in stool (P = 0.001) were significantly more frequent in schools of the east side of the Mekong. Boys suffered more frequently from splenomegaly (P = 0.05), ascites (P = 0.05) and bloody stools (P = 0.004) than girls. No difference in sex was found for the prevalence and intensity of infection and prevalence of hepatomegaly. On the school level prevalence and intensity of infection were highly associated (r = 0. 93, P = 0.0001). The intensity of infection was significantly associated only with the prevalence of hepatomegaly (r = 0.44, P = 0. 05) and blood in stool (r = 0.40, P = 0.02). This comprehensive epidemiological study documents for the first time the public health importance of schistosomiasis mekongi in the Province of Kracheh, Northern Cambodia and points at key epidemiological features of this schistosome species, in particular the high level of morbidity associated with infection

    How my clinical placement in Australia helped me to become the clinician I am today

    Get PDF
    In the global society in which we live the graduate speech-language pathologist needs to be prepared for working with a culturally diverse client group and for the possibility that they may work in a country other than the one in which they trained. International clinical placement opportunities are a common method for many Australian speech language pathology programs to prepare students for an international career and for working with a culturally diverse client group. There have been many reported benefits for students taking part in these placements. But what are the benefits for overseas students who participate in a placement in Australia? This clinical insights article asked five clinicians who had trained in the UK and who had completed a placement in Australia during their training to reflect on this experience. They reported many benefits both personally and professionally. They felt that their Australian placement experience prepared them to work with a culturally diverse client group and shaped who they areas clinicians. There were also additional benefits for the service in which they now worked

    Synchrotron Emission from Hot Accretion Flows and the Cosmic Microwave Background Anisotropy

    Get PDF
    Current estimates of number counts of radio sources in the frequency range where the most sensitive Cosmic Microwave Background (CMB) experiments are carried out significantly under-represent sources with strongly inverted spectra. Hot accretion flows around supermassive black holes in the nuclei of nearby galaxies are expected to produce inverted radio spectra by thermal synchrotron emission. We calculate the temperature fluctuations and power spectra of these sources in the Planck Surveyor 30 GHz energy channel, where their emission is expected to peak. We find that their potential contribution is generally comparable to the instrumental noise, and approaches the CMB anisotropy level at small angular scales. Forthcoming CMB missions, which will provide a large statistical sample of inverted-spectra sources, will be crucial for determining the distribution of hot accretion flows in nearby quiescent galactic nuclei. Detection of these sources in different frequency channels will help constrain their spectral characteristics, hence their physical properties.Comment: 10 pages, 4 figures, accepted for publication in Ap

    A programmable two-qubit quantum processor in silicon

    Full text link
    With qubit measurement and control fidelities above the threshold of fault-tolerance, much attention is moving towards the daunting task of scaling up the number of physical qubits to the large numbers needed for fault tolerant quantum computing. Here, quantum dot based spin qubits may offer significant advantages due to their potential for high densities, all-electrical operation, and integration onto an industrial platform. In this system, the initialisation, readout, single- and two-qubit gates have been demonstrated in various qubit representations. However, as seen with other small scale quantum computer demonstrations, combining these elements leads to new challenges involving qubit crosstalk, state leakage, calibration, and control hardware which provide invaluable insight towards scaling up. Here we address these challenges and demonstrate a programmable two-qubit quantum processor in silicon by performing both the Deutsch-Josza and the Grover search algorithms. In addition, we characterise the entanglement in our processor through quantum state tomography of Bell states measuring state fidelities between 85-89% and concurrences between 73-80%. These results pave the way for larger scale quantum computers using spins confined to quantum dots

    Segregation by thermal diffusion in granular shear flows

    Full text link
    Segregation by thermal diffusion of an intruder immersed in a sheared granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation is induced by the presence of a temperature gradient orthogonal to the shear flow plane and parallel to gravity. We show that, like in analogous systems without shear, the segregation criterion yields a transition between upwards segregation and downwards segregation. The form of the phase diagrams is illustrated in detail showing that they depend sensitively on the value of gravity relative to the thermal gradient. Two specific situations are considered: i) absence of gravity, and ii) homogeneous temperature. We find that both mechanisms (upwards and downwards segregation) are stronger and more clearly separated when compared with segregation criteria in systems without shear.Comment: 8 figures. To appear in J. Stat. Mec

    Quasi-One-Dimensional Spin Dynamics in dd-Electron Heavy-Fermion Metal Y1−x_{1-x}Scx_xMn2_2

    Full text link
    Slow spin fluctuations (Îœ<1012\nu < 10^{12} s−1^-1) observed by the muon spin relaxation technique in Y1−x_{1-x}Scx_xMn2_2 exhibits a power law dependence on temperature (Μ∝Tα\nu \propto T^\alpha), where the power converges asymptotically to unity (α→1\alpha\rightarrow 1) as the system moves away from spin-glass instability with increasing Sc content xx. This linear TT dependence, which is common to that observed in LiV2_2O4_4, is in line with the prediction of the "intersecting Hubbard chains" model for a metallic pyrochlore lattice, suggesting that the geometrical constraints to t2g bands specific to the pyrochlore structure serve as a basis of the dd-electron heavy-fermion state.Comment: 5 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Flexible Lipid Bilayers in Implicit Solvent

    Full text link
    A minimalist simulation model for lipid bilayers is presented. Each lipid is represented by a flexible chain of beads in implicit solvent. The hydrophobic effect is mimicked through an intermolecular pair potential localized at the ``water''/hydrocarbon tail interface. This potential guarantees realistic interfacial tensions for lipids in a bilayer geometry. Lipids self assemble into bilayer structures that display fluidity and elastic properties consistent with experimental model membrane systems. Varying molecular flexibility allows for tuning of elastic moduli and area/molecule over a range of values seen in experimental systems.Comment: 5 pages, 5 figure
    • 

    corecore