32,478 research outputs found
NoSOCS in SDSS. VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe
We investigated the variation in the fraction of optical active galactic
nuclei (AGN) hosts with stellar mass, as well as their local and global
environments. Our sample is composed of cluster members and field galaxies at
and we consider only strong AGN. We find a strong variation in the
AGN fraction () with stellar mass. The field population comprises a
higher AGN fraction compared to the global cluster population, especially for
objects with log . Hence, we restricted our analysis to more
massive objects. We detected a smooth variation in the with local
stellar mass density for cluster objects, reaching a plateau in the field
environment. As a function of clustercentric distance we verify that
is roughly constant for R R, but show a steep decline inwards. We
have also verified the dependence of the AGN population on cluster velocity
dispersion, finding a constant behavior for low mass systems ( km s). However, there is a strong decline in
for higher mass clusters ( 700 km s). When comparing the in
clusters with or without substructure we only find different results for
objects at large radii (R R), in the sense that clusters with
substructure present some excess in the AGN fraction. Finally, we have found
that the phase-space distribution of AGN cluster members is significantly
different than other populations. Due to the environmental dependence of
and their phase-space distribution we interpret AGN to be the result
of galaxy interactions, favored in environments where the relative velocities
are low, typical of the field, low mass groups or cluster outskirts.Comment: 11 pages, 10 figures, Accepted to MNRA
Majorana Fermions Signatures in Macroscopic Quantum Tunneling
Thermodynamic measurements of magnetic fluxes and I-V characteristics in
SQUIDs offer promising paths to the characterization of topological
superconducting phases. We consider the problem of macroscopic quantum
tunneling in an rf-SQUID in a topological superconducting phase. We show that
the topological order shifts the tunneling rates and quantum levels, both in
the parity conserving and fluctuating cases. The latter case is argued to
actually enhance the signatures in the slowly fluctuating limit, which is
expected to take place in the quantum regime of the circuit. In view of recent
advances, we also discuss how our results affect a -junction loop.Comment: 10 pages, 11 figure
MCMC Bayesian Estimation in FIEGARCH Models
Bayesian inference for fractionally integrated exponential generalized
autoregressive conditional heteroskedastic (FIEGARCH) models using Markov Chain
Monte Carlo (MCMC) methods is described. A simulation study is presented to
access the performance of the procedure, under the presence of long-memory in
the volatility. Samples from FIEGARCH processes are obtained upon considering
the generalized error distribution (GED) for the innovation process. Different
values for the tail-thickness parameter \nu are considered covering both
scenarios, innovation processes with lighter (\nu2) tails
than the Gaussian distribution (\nu=2). A sensitivity analysis is performed by
considering different prior density functions and by integrating (or not) the
knowledge on the true parameter values to select the hyperparameter values
Instanton Corrected Non-Supersymmetric Attractors
We discuss non-supersymmetric attractors with an instanton correction in Type
IIA string theory compactified on a Calabi-Yau three-fold at large volume. For
a stable non-supersymmetric black hole, the attractor point must minimize the
effective black hole potential. We study the supersymmetric as well as
non-supersymmetric attractors for the D0-D4 system with instanton corrections.
We show that in simple models, like the STU model, the flat directions of the
mass matrix can be lifted by a suitable choice of the instanton parameters.Comment: Minor modifications, Corrected typos, 38 pages, 1 figur
Emergent SU(N) symmetry in disordered SO(N) spin chains
Strongly disordered spin chains invariant under the SO(N) group are shown to
display random-singlet phases with emergent SU(N) symmetry without fine tuning.
The phases with emergent SU(N) symmetry are of two kinds: one has a ground
state formed of randomly distributed singlets of strongly bound pairs of SO(N)
spins (a `mesonic' phase), while the other has a ground state composed of
singlets made out of strongly bound integer multiples of N SO(N) spins (a
`baryonic' phase). The established mechanism is general and we put forward the
cases of and as prime candidates for experimental
realizations in material compounds and cold-atoms systems. We display universal
temperature scaling and critical exponents for susceptibilities distinguishing
these phases and characterizing the enlarging of the microscopic symmetries at
low energies.Comment: 5 pages, 2 figures, Contribution to the Topical Issue "Recent
Advances in the Theory of Disordered Systems", edited by Ferenc Igl\'oi and
Heiko Riege
- …