16,613 research outputs found
Gravitation and Duality Symmetry
By generalizing the Hodge dual operator to the case of soldered bundles, and
working in the context of the teleparallel equivalent of general relativity, an
analysis of the duality symmetry in gravitation is performed. Although the
basic conclusion is that, at least in the general case, gravitation is not dual
symmetric, there is a particular theory in which this symmetry shows up. It is
a self dual (or anti-self dual) teleparallel gravity in which, due to the fact
that it does not contribute to the interaction of fermions with gravitation,
the purely tensor part of torsion is assumed to vanish. The ensuing fermionic
gravitational interaction is found to be chiral. Since duality is intimately
related to renormalizability, this theory may eventually be more amenable to
renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes,
references added. Accepted for publication in Int. J. Mod. Phys.
Localization properties of a tight-binding electronic model on the Apollonian network
An investigation on the properties of electronic states of a tight-binding
Hamiltonian on the Apollonian network is presented. This structure, which is
defined based on the Apollonian packing problem, has been explored both as a
complex network, and as a substrate, on the top of which physical models can
defined. The Schrodinger equation of the model, which includes only nearest
neighbor interactions, is written in a matrix formulation. In the uniform case,
the resulting Hamiltonian is proportional to the adjacency matrix of the
Apollonian network. The characterization of the electronic eigenstates is based
on the properties of the spectrum, which is characterized by a very large
degeneracy. The rotation symmetry of the network and large number of
equivalent sites are reflected in all eigenstates, which are classified
according to their parity. Extended and localized states are identified by
evaluating the participation rate. Results for other two non-uniform models on
the Apollonian network are also presented. In one case, interaction is
considered to be dependent of the node degree, while in the other one, random
on-site energies are considered.Comment: 7pages, 7 figure
Screening effects in flow through rough channels
A surprising similarity is found between the distribution of hydrodynamic
stress on the wall of an irregular channel and the distribution of flux from a
purely Laplacian field on the same geometry. This finding is a direct outcome
from numerical simulations of the Navier-Stokes equations for flow at low
Reynolds numbers in two-dimensional channels with rough walls presenting either
deterministic or random self-similar geometries. For high Reynolds numbers,
when inertial effects become relevant, the distribution of wall stresses on
deterministic and random fractal rough channels becomes substantially dependent
on the microscopic details of the walls geometry. In addition, we find that,
while the permeability of the random channel follows the usual decrease with
Reynolds, our results indicate an unexpected permeability increase for the
deterministic case, i.e., ``the rougher the better''. We show that this complex
behavior is closely related with the presence and relative intensity of
recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
Conditions for non-monotonic vortex interaction in two-band superconductors
We describe a semi-analytic approach to the two-band Ginzburg-Landau theory,
which predicts the behavior of vortices in two-band superconductors. We show
that the character of the short-range vortex-vortex interaction is determined
by the sign of the normal domain - superconductor interface energy, in analogy
with the conventional differentiation between type-I and type-II
superconductors. However, we also show that the long-range interaction is
determined by a modified Ginzburg-Landau parameter , different from
the standard of a bulk superconductor. This opens the possibility for
non-monotonic vortex-vortex interaction, which is temperature-dependent, and
can be further tuned by alterations of the material on the microscopic scale
Multiple Invaded Consolidating Materials
We study a multiple invasion model to simulate corrosion or intrusion
processes. Estimated values for the fractal dimension of the invaded region
reveal that the critical exponents vary as function of the generation number
, i.e., with the number of times the invasion process takes place. The
averaged mass of the invaded region decreases with a power-law as a
function of , , where the exponent . We
also find that the fractal dimension of the invaded cluster changes from
to . This result confirms that the
multiple invasion process follows a continuous transition from one universality
class (NTIP) to another (optimal path). In addition, we report extensive
numerical simulations that indicate that the mass distribution of avalanches
has a power-law behavior and we find that the exponent
governing the power-law changes continuously as a
function of the parameter . We propose a scaling law for the mass
distribution of avalanches for different number of generations .Comment: 8 pages and 16 figure
- …