19,943 research outputs found
Toward a better understanding of the doping mechanism involved in Mo(tfd-COCF doped PBDTTT-c
In this study, we aim to improve our understanding of the doping mechanism
involved in the polymer PBDTTT-c doped with(Mo(tfd-COCF3)3. We follow the
evolution of the hole density with dopant concentration to highlight the limits
of organic semiconductor doping. To enable the use of doping to enhance the
performance of organic electronic devices, doping efficiency must be understood
and improved. We report here a study using complementary optical and electrical
characterization techniques, which sheds some light on the origin of this
limited doping efficiency at high dopant concentration. Two doping mechanisms
are considered, the direct charge transfer (DCT) and the charge transfer
complex (CTC). We discuss the validity of the model involved as well as its
impact on the doping efficiency.Comment: Accepted manuscript, J. Appl. Phy
A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems
We use the density matrix renormalization group (DMRG) method to study the
ground and low-lying excited states of three kinds of uniform and dimerized
alternating spin chains. The DMRG procedure is also employed to obtain
low-temperature thermodynamic properties of these systems. We consider a 2N
site system with spins and alternating from site to site and
interacting via a Heisenberg antiferromagnetic exchange. The three systems
studied correspond to being equal to and
; all of them have very similar properties. The ground state is found
to be ferrimagnetic with total spin . We find that there is
a gapless excitation to a state with spin , and a gapped excitation to
a state with spin . Surprisingly, the correlation length in the ground
state is found to be very small for this gapless system. The DMRG analysis
shows that the chain is susceptible to a conditional spin-Peierls instability.
Furthermore, our studies of the magnetization, magnetic susceptibility
and specific heat show strong magnetic-field dependences. The product
shows a minimum as a function of temperature T at low magnetic fields; the
minimum vanishes at high magnetic fields. This low-field behavior is in
agreement with earlier experimental observations. The specific heat shows a
maximum as a function of temperature, and the height of the maximum increases
sharply at high magnetic fields. Although all the three systems show
qualitatively similar behavior, there are some notable quantitative differences
between the systems in which the site spin difference, , is large
and small respectively.Comment: 16 LaTeX pages, 13 postscript figure
Network constraints on learnability of probabilistic motor sequences
Human learners are adept at grasping the complex relationships underlying
incoming sequential input. In the present work, we formalize complex
relationships as graph structures derived from temporal associations in motor
sequences. Next, we explore the extent to which learners are sensitive to key
variations in the topological properties inherent to those graph structures.
Participants performed a probabilistic motor sequence task in which the order
of button presses was determined by the traversal of graphs with modular,
lattice-like, or random organization. Graph nodes each represented a unique
button press and edges represented a transition between button presses. Results
indicate that learning, indexed here by participants' response times, was
strongly mediated by the graph's meso-scale organization, with modular graphs
being associated with shorter response times than random and lattice graphs.
Moreover, variations in a node's number of connections (degree) and a node's
role in mediating long-distance communication (betweenness centrality) impacted
graph learning, even after accounting for level of practice on that node. These
results demonstrate that the graph architecture underlying temporal sequences
of stimuli fundamentally constrains learning, and moreover that tools from
network science provide a valuable framework for assessing how learners encode
complex, temporally structured information.Comment: 29 pages, 4 figure
Canalizing Kauffman networks: non-ergodicity and its effect on their critical behavior
Boolean Networks have been used to study numerous phenomena, including gene
regulation, neural networks, social interactions, and biological evolution.
Here, we propose a general method for determining the critical behavior of
Boolean systems built from arbitrary ensembles of Boolean functions. In
particular, we solve the critical condition for systems of units operating
according to canalizing functions and present strong numerical evidence that
our approach correctly predicts the phase transition from order to chaos in
such systems.Comment: to be published in PR
Magnetic Properties of J-J-J' Quantum Heisenberg Chains with Spin S=1/2, 1, 3/2 and 2 in a Magnetic Field
By means of the density matrix renormalization group (DMRG) method, the
magnetic properties of the J-J-J quantum Heisenberg chains with spin
, 1, 3/2 and 2 in the ground states are investigated in the presence of
a magnetic field. Two different cases are considered: (a) when is
antiferromagnetic and is ferromagnetic (i.e. the AF-AF-F chain),
the system is a ferrimagnet. The plateaus of the magnetization are observed. It
is found that the width of the plateaus decreases with increasing the
ferromagnetic coupling, and disappears when passes over a
critical value. The saturated field is observed to be independent of the
ferromagnetic coupling; (b) when is ferromagnetic and is
antiferromagnetic (i.e. the F-F-AF chain), the system becomes an
antiferromagnet. The plateaus of the magnetization are also seen. The width of
the plateaus decreases with decreasing the antiferromagnetic coupling, and
disappears when passes over a critical value. Though the ground
state properties are quite different, the magnetization plateaus in both cases
tend to disappear when the ferromagnetic coupling becomes more dominant.
Besides, no fundamental difference between the systems with spin half-integer
and integer has been found.Comment: 8 pages, 9 figures, to be published in J. Phys.: Condens. Matte
Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis
Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism
Low-Temperature Properties of Quasi-One-Dimensional Molecule-Based Ferromagnets
Quantum and thermal behaviors of low-dimensional mixed-spin systems are
investigated with particular emphasis on the design of molecule-based
ferromagnets. One can obtain a molecular ferromagnet by assembling molecular
bricks so as to construct a low-dimensional system with a magnetic ground state
and then coupling the chains or the layers again in a ferromagnetic fashion.
Two of thus-constructed quasi-one-dimensional bimetallic compounds are
qualitatively viewed within the spin-wave treatment, one of which successfully
grows into a bulk magnet, while the other of which ends in a singlet ground
state. Then, concentrating on the ferrimagnetic arrangement on a two-leg ladder
which is well indicative of general coupled-chain ferrimagnets, we develop the
spin-wave theory and fully reveal its low-energy structure. We inquire further
into the ferromagnetic aspect of the ferrimagnetic ladder numerically
calculating the sublattice magnetization and the magnetic susceptibility. There
exists a moderate coupling strength between the chains in order to obtain the
most ferromagnetic ferrimagnet.Comment: 10 pages, 7 figures embedded, to be published in J. Phys. Soc. Jpn.
Vol.70, No.5 (2001
- …