research

Magnetic Properties of J-J-J' Quantum Heisenberg Chains with Spin S=1/2, 1, 3/2 and 2 in a Magnetic Field

Abstract

By means of the density matrix renormalization group (DMRG) method, the magnetic properties of the J-J-J^{\prime} quantum Heisenberg chains with spin S=1/2S=1/2, 1, 3/2 and 2 in the ground states are investigated in the presence of a magnetic field. Two different cases are considered: (a) when JJ is antiferromagnetic and JJ^{\prime} is ferromagnetic (i.e. the AF-AF-F chain), the system is a ferrimagnet. The plateaus of the magnetization are observed. It is found that the width of the plateaus decreases with increasing the ferromagnetic coupling, and disappears when % J^{\prime}/J passes over a critical value. The saturated field is observed to be independent of the ferromagnetic coupling; (b) when JJ is ferromagnetic and JJ^{\prime} is antiferromagnetic (i.e. the F-F-AF chain), the system becomes an antiferromagnet. The plateaus of the magnetization are also seen. The width of the plateaus decreases with decreasing the antiferromagnetic coupling, and disappears when J/JJ^{\prime}/J passes over a critical value. Though the ground state properties are quite different, the magnetization plateaus in both cases tend to disappear when the ferromagnetic coupling becomes more dominant. Besides, no fundamental difference between the systems with spin half-integer and integer has been found.Comment: 8 pages, 9 figures, to be published in J. Phys.: Condens. Matte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019