7,358 research outputs found

    Labour's record on financial regulation

    Get PDF
    In 1997 the new Labour government launched major initiatives in the area of financial regulation, setting up the Financial Services Authority as a comprehensive regulatory body, supported by the legislative framework of the Financial Services and Markets Act 2000. We evaluate the Labour government’s record on financial regulation in terms of its achievements and failures, especially in dealing with the global financial crisis that started in 2007. While we identify some clear flaws in regulatory design and enforcement, our evaluation highlights some inherent difficulties of financial regulation

    The Angular Resolution of Space-Based Gravitational Wave Detectors

    Full text link
    Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilateral triangle around the earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a way that the plane of the triangle is tilted at 60 degrees relative to the ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two classes of detectors for two kinds of sources (essentially monochromatic compact binaries and coalescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported in the literature, and underline the importance of including the higher-order PN terms in the waveform when predicting the angular resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version corrects an error in our original paper and adds some clarifying language. The error also required correction of the graphs now shown in Figures 3 through

    Language-universal constraints on the segmentation of English

    Get PDF
    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific

    LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms

    Full text link
    The planned Laser Interferometer Space Antenna (LISA) is expected to detect the inspiral and merger of massive black hole binaries (MBHBs) at z <~ 5 with signal-to-noise ratios (SNRs) of hundreds to thousands. Because of these high SNRs, and because these SNRs accrete over periods of weeks to months, it should be possible to extract the physical parameters of these systems with high accuracy; for instance, for a ~ 10^6 Msun MBHBs at z = 1 it should be possible to determine the two masses to ~ 0.1% and the sky location to ~ 1 degree. However, those are just the errors due to noise: there will be additional "theoretical" errors due to inaccuracies in our best model waveforms, which are still only approximate. The goal of this paper is to estimate the typical magnitude of these theoretical errors. We develop mathematical tools for this purpose, and apply them to a somewhat simplified version of the MBHB problem, in which we consider just the inspiral part of the waveform and neglect spin-induced precession, eccentricity, and PN amplitude corrections. For this simplified version, we estimate that theoretical uncertainties in sky position will typically be ~ 1 degree, i.e., comparable to the statistical uncertainty. For the mass and spin parameters, our results suggest that while theoretical errors will be rather small absolutely, they could still dominate over statistical errors (by roughly an order of magnitude) for the strongest sources. The tools developed here should be useful for estimating the magnitude of theoretical errors in many other problems in gravitational-wave astronomy.Comment: RevTeX4, 16 pages, 2 EPS figures. Corrected typos, clarified statement

    Orbital evolution of a test particle around a black hole: higher-order corrections

    Get PDF
    We study the orbital evolution of a radiation-damped binary in the extreme mass ratio limit, and the resulting waveforms, to one order beyond what can be obtained using the conservation laws approach. The equations of motion are solved perturbatively in the mass ratio (or the corresponding parameter in the scalar field toy model), using the self force, for quasi-circular orbits around a Schwarzschild black hole. This approach is applied for the scalar model. Higher-order corrections yield a phase shift which, if included, may make gravitational-wave astronomy potentially highly accurate.Comment: 4 pages, 3 Encapsulated PostScript figure

    Gravitational waves from inspiraling compact binaries: Second post-Newtonian waveforms as search templates

    Get PDF
    We ascertain the effectiveness of the second post-Newtonian approximation to the gravitational waves emitted during the adiabatic inspiral of a compact binary system as templates for signal searches with kilometer-scale interferometric detectors. The reference signal is obtained by solving the Teukolsky equation for a small mass moving on a circular orbit around a large nonrotating black hole. Fitting factors computed from this signal and these templates, for various types of binary systems, are all above the 90% mark. According to Apostolatos' criterion, second post-Newtonian waveforms should make acceptably effective search templates.Comment: LaTeX, one eps figure. Hires and color versions are available from http://jovian.physics.uoguelph.ca/~droz/uni/papers/search.htm

    Bartonella vinsonii sub. arupensis infection in animals of veterinary importance, ticks and biopsy samples

    Get PDF
    Testing for vector-borne pathogens in livestock is largely reliant upon blood and tissue. The role of biopsy samples remains poorly explored for detecting tick-borne bacteria in animals. In a 2-year survey, animals of veterinary importance from farms throughout the Northern part of Greece were routinely checked for the presence of biopsy samples. Where detected, either a portion or biopsy was collected together with whole blood samples and any ticks at the site of the biopsy sample. Molecular testing was carried out by real-time PCR targeting the ITS gene of Bartonella species. A total 68 samples [28 blood samples, 28 biopsy samples and 12 ticks (9 Rhipicephalus bursa and 3 R. turanicus)] were collected from goats (64 samples) and bovine (4 samples). Eight (11.8%) of the 68 samples were positive for Bartonella species. Of the biopsy sample and whole blood samples, four (14.3%) of each type were positive for Bartonella species. None of the ticks was tested positive for Bartonella species. All pairs of positive biopsy samples/whole blood samples originated from the same animals. Positive samples were identified as B. vinsonii sub. arupensis. Although many more samples from a much wider spectrum of animal species is required before concluding upon the merit of biopsy samples on the study of tick-borne diseases, the significance of our finding warrants further study, both for clinical consequences in small ruminants and for those humans farming infected animals

    The Effect of the LISA Response Function on Observations of Monochromatic Sources

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to provide the largest observational sample of binary systems of faint sub-solar mass compact objects, in particular white-dwarfs, whose radiation is monochromatic over most of the LISA observational window. Current astrophysical estimates suggest that the instrument will be able to resolve about 10000 such systems, with a large fraction of them at frequencies above 3 mHz, where the wavelength of gravitational waves becomes comparable to or shorter than the LISA arm-length. This affects the structure of the so-called LISA transfer function which cannot be treated as constant in this frequency range: it introduces characteristic phase and amplitude modulations that depend on the source location in the sky and the emission frequency. Here we investigate the effect of the LISA transfer function on detection and parameter estimation for monochromatic sources. For signal detection we show that filters constructed by approximating the transfer function as a constant (long wavelength approximation) introduce a negligible loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for f below 10mHz, therefore in a frequency range where one would actually expect the approximation to fail. For parameter estimation, we conclude that in the range 3mHz to 30mHz the errors associated with parameter measurements differ from about 5% up to a factor of 10 (depending on the actual source parameters and emission frequency) with respect to those computed using the long wavelength approximation.Comment: replacement version with typos correcte
    • …
    corecore