18,876 research outputs found

    Herschel/HIFI detections of hydrides towards AFGL 2591: Envelope emission versus tenuous cloud absorption

    Get PDF
    The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH^+, NH, OH^+, H_2O^+, while NH^+ and SH^+ have not been detected. All molecules except for CH and CH^+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(J_(F,P) = 3/2_(2,−) − 1/2_(1,+)) and CH^+(J = 1−0, J = 2−1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH^+ emission stems from the envelope. The observed abundance and excitation of CH and CH^+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules

    Impact of Home Field Advantage: Analyzed Across Three Professional Sports

    Full text link
    We examined the impact of home-field advantage in the NFL, NBA, and MLB. We defined home-field advantage as winning more than 50% of the home games. Additionally, we took into consideration how season length could act as a moderator and influence the impact of home-field advantage. We collected data from the 2015 NBA and MLB seasons and the 2015 and 2016 NFL seasons to determine statistical significance. In total, we got data from 4,141 games to analyze. We found that there is statistical significance that the home team has a better chance of winning than the away team across the NFL, NBA, and MLB. We also found that season length has a significant impact on home team winning percentage

    Measurement of energetic particle radiation at the synchronous altitude aboard ATS-6

    Get PDF
    The Aerospace Corporation energetic electron-proton spectrometer operating on ATS-6 is described. This experiment detects energetic electrons in four channels between 140 keV and greater than 3.9 MeV, measures energetic protons in five energy channels between 2.3 and 80 MeV and energetic alpha particles in three channels between 9.4 and 94 MeV. After more than a year of operation in orbit, the experiment continues to return excellent data on the behavior of energetic magnetospheric electrons as well as information regarding the fluxes of solar protons and alpha particles

    Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation

    Get PDF
    We report photomixer devices fabricated on a material consisting of self-assembled ErAs islands in GaAs, which is grown by molecular beam epitaxy. The devices perform comparably and provide an alternative to those made from low-temperature-grown GaAs. The photomixer's frequency response demonstrates that the material is a photoconductor with subpicosecond response time, in agreement with time-resolved differential reflectance measurements. The material also provides the other needed properties such as high photocarrier mobility and high breakdown field, which exceeds 2×10^5 V/cm. The maximum output power before device failure at frequencies of 1 THz was of order 0.1 µW. This material has the potential to allow engineering of key photomixer properties such as the response time and dark resistance

    Cosmological Constraints from Moments of the Thermal Sunyaev-Zel'dovich Effect

    Full text link
    In this paper, we explain how moments of the thermal Sunyaev-Zel'dovich (tSZ) effect can constrain both cosmological parameters and the astrophysics of the intracluster medium (ICM). As the tSZ signal is strongly non-Gaussian, higher moments of tSZ maps contain useful information. We first calculate the dependence of the tSZ moments on cosmological parameters, finding that higher moments scale more steeply with sigma_8 and are sourced by more massive galaxy clusters. Taking advantage of the different dependence of the variance and skewness on cosmological and astrophysical parameters, we construct a statistic, ||/^1.4, which cancels much of the dependence on cosmology (i.e., sigma_8) yet remains sensitive to the astrophysics of intracluster gas (in particular, to the gas fraction in low-mass clusters). Constraining the ICM astrophysics using this statistic could break the well-known degeneracy between cosmology and gas physics in tSZ measurements, allowing for tight constraints on cosmological parameters. Although detailed simulations will be needed to fully characterize the accuracy of this technique, we provide a first application to data from the Atacama Cosmology Telescope and the South Pole Telescope. We estimate that a Planck-like full-sky tSZ map could achieve a <1% constraint on sigma_8 and a 1-sigma error on the sum of the neutrino masses that is comparable to the existing lower bound from oscillation measurements.Comment: 11 pages, 12 figures, to be submitted to Phys. Rev. D; v2: 14 pages, 16 figures, matches PRD accepted version (changes from v1 include additional calculations with primordial non-Gaussianity and a new appendix discussing the tSZ kurtosis

    Momentum relaxation from the fluid/gravity correspondence

    Get PDF
    We provide a hydrodynamical description of a holographic theory with broken translation invariance. We use the fluid/gravity correspondence to systematically obtain both the constitutive relations for the currents and the Ward identity for momentum relaxation in a derivative expansion. Beyond leading order in the strength of momentum relaxation, our results differ from a model previously proposed by Hartnoll et al. As an application of these techniques we consider charge and heat transport in the boundary theory. We derive the low frequency thermoelectric transport coefficients of the holographic theory from the linearised hydrodynamics.Comment: 19 pages + appendix, v2: references added, typos corrected, v3: version published in JHE
    corecore