82,835 research outputs found

    Quantification of entanglement via uncertainties

    Get PDF
    We show that entanglement of pure multi-party states can be quantified by means of quantum uncertainties of certain basic observables through the use of measure that has been initially proposed in [10] for bipartite systems.Comment: Changed content, references added 7 pages, no figures, PRA in pres

    Steady state entanglement of two atoms created by classical driving field

    Get PDF
    The stabilization of steady state entanglement caused by action of a classical driving field in the system of two-level atoms with the dipole interaction accompanied by spontaneous emission is discussed. An exact solution shows that the maximum amount of concurrence that can be achieved in Lamb-Dicke limit is 0.43, which corresponds to the entanglement Emax=0.285\mathcal{E}_{max}=0.285 ebit. Dependence of entanglement on interatomic distance and classical driving field is examined numerically.Comment: 14 pages, 2 figure

    Path integral representation of the evolution operator for the Dirac equation

    Get PDF
    A path integral representation of the evolution operator for the four-dimensional Dirac equation is proposed. A quadratic form of the canonical momenta regularizes the original representation of the path integral in the electron phase space. This regularization allows to obtain a representation of the path integral over trajectories in the configuration space, i.e. in the Minkowsky space. This form of the path integral is useful for the formulation of perturbation theory in an external electromagnetic field.Comment: 3 page

    Refining structures against reflection rank: an alternative metric for electron crystallography.

    Get PDF
    A new metric is proposed to improve the fidelity of structures refined against precession electron diffraction data. The inherent dynamical nature of electron diffraction ensures that direct refinement of recorded intensities against structure-factor amplitudes can be prone to systematic errors. Here it is shown that the relative intensity of precessed reflections, their rank, can be used as an alternative metric for refinement. Experimental data from erbium pyrogermanate show that applying precession reduces the dynamical transfer of intensity between reflections and hence stabilizes their rank, enabling accurate and reliable structural refinements. This approach is then applied successfully to an unknown structure of an oxygen-deficient bismuth manganite resulting in a refined structural model that is similar to a calcium analogue.The authors thank the EPSRC for financial support through grant number HO1771
    corecore