120 research outputs found

    Analysis of BRCA1 and RAD51C promoter methylation in italian families at high-risk of breast and ovarian cancer

    Get PDF
    Previous studies on breast and ovarian carcinoma (BC and OC) revealed constitutional BRCA1 and RAD51C promoter hypermethylation as epigenetic alterations leading to tumor predisposition. Nevertheless, the impact of epimutations at these genes is still debated. One hundred and eight women affected by BC, OC, or both and considered at very high risk of carrying BRCA1 germline mutations were studied. All samples were negative for pathogenic variants or variants of uncertain significance at BRCA testing. Quantitative BRCA1 and RAD51C promoter methylation analyses were performed by Epityper mass spectrometry on peripheral blood samples and results were compared with those in controls. All the 108 analyzed cases showed methylation levels at the BRCA1/RAD51C promoter comparable with controls. Mean methylation levels (\ub1 stdev) at the BRCA1 promoter were 4.3% (\ub1 1.4%) and 4.4% (\ub1 1.4%) in controls and patients, respectively (p > 0.05; t-test); mean methylation levels (\ub1 stdev) at the RAD51C promoter were 4.3% (\ub1 0.9%) and 3.7% (\ub1 0.9%) in controls and patients, respectively (p > 0.05; t-test). Based on these observations; the analysis of constitutional methylation at promoters of these genes does not seem to substantially improve the definition of cancer risks in patients. These data support the idea that epimutations represent a very rare event in high-risk BC/OC populations

    Beckwith–Wiedemann and IMAGe syndromes : two very different diseases caused by mutations on the same gene

    Get PDF
    Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith\u2013Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes

    Genetic polymorphisms and sepsis in premature neonates

    Get PDF
    Identifying single nucleotide polymorphisms (SNPs) in the genes involved in sepsis may help to clarify the pathophysiology of neonatal sepsis. The aim of this study was to evaluate the relationships between sepsis in pre-term neonates and genes potentially involved in the response to invasion by infectious agents. The study involved 101 pre-term neonates born between June 2008 and May 2012 with a diagnosis of microbiologically confirmed sepsis, 98 pre-term neonates with clinical sepsis and 100 randomly selected, otherwise healthy pre-term neonates born during the study period. During the study, 47 SNPs in 18 candidate genes were genotyped on Guthrie cards using an ABI PRISM 7900 HT Fast real-time and MAssARRAY for nucleic acids instruments. Genotypes CT and TT of rs1143643 (the IL1\u3b2 gene) and genotype GG of rs2664349GG (the MMP-16 gene) were associated with a significantly increased overall risk of developing sepsis (p = 0.03, p = 0.05 and p = 0.03), whereas genotypes AG of rs4358188 (the BPI gene) and CT of rs1799946 (the DEF\u3b21 gene) were associated with a significantly reduced risk of developing sepsis (p = 0.05 for both). Among the patients with bacteriologically confirmed sepsis, only genotype GG of rs2664349 (the MMP-16 gene) showed a significant association with an increased risk (p = 0.02). Genotypes GG of rs2569190 (the CD14 gene) and AT of rs4073 (the IL8 gene) were associated with a significantly increased risk of developing severe sepsis (p = 0.05 and p = 0.01). Genotype AG of rs1800629 (the LTA gene) and genotypes CC and CT of rs1341023 (the BPI gene) were associated with a significantly increased risk of developing Gram-negative sepsis (p = 0.04, p = 0.04 and p = 0.03). These results show that genetic variability seems to play a role in sepsis in pre-term neonates by influencing susceptibility to and the severity of the disease, as well as the risk of having disease due to specific pathogens. \ua9 2014 Esposito et al

    Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients

    Get PDF
    Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region

    Fragile X syndrome : A review of clinical and molecular diagnoses

    Get PDF
    Background: Fragile X Syndrome (FXS) is the second cause of intellectual disability after Down syndrome and the most prevalent cause of intellectual disability in males, affecting 1:5000\u20137000 men and 1:4000\u20136000 women. It is caused by an alteration of the FMR1 gene, which maps at the Xq27.3 band: more than 99% of individuals have a CGG expansion (>200 triplets) in the 5\u2032 UTR of the gene, and FMR1 mutations and duplication/deletion are responsible for the remaining (<1%) molecular diagnoses of FXS. The aim of this review was to gather the current clinical and molecular knowledge about FXS to provide clinicians with a tool to guide the initial assessment and follow-up of FXS and to offer to laboratory workers and researchers an update about the current diagnostic procedures. Discussion: FXS is a well-known condition; however, most of the studies thus far have focused on neuropsychiatric features. Unfortunately, some of the available studies have limitations, such as the paucity of patients enrolled or bias due to the collection of the data in a single-country population, which may be not representative of the average global FXS population. In recent years, insight into the adult presentation of the disease has progressively increased. Pharmacological treatment of FXS is essentially symptom based, but the growing understanding of the molecular and biological mechanisms of the disease are paving the way to targeted therapy, which may reverse the effects of FMRP deficiency and be a real cure for the disease itself, not just its symptoms. Conclusions: The clinical spectrum of FXS is wide, presenting not only as an isolated intellectual disability but as a multi-systemic condition, involving predominantly the central nervous system but potentially affecting any apparatus. Given the relative high frequency of the condition and its complex clinical management, FXS appears to have an important economic and social burden

    Percutaneous injection of radiopaque gelified ethanol for the treatment of lumbar and cervical intervertebral disk herniations: experience and clinical outcome in 80 patients.

    Get PDF
    BACKGROUND AND PURPOSE: Chemonucleolysis represents a minimally invasive percutaneous technique characterized by an intradiskal injection of materials under fluoroscopic or CT guidance. Recently, a substance based on radiopaque gelified ethanol has been introduced. The purpose of this study was to describe the indications, procedure, safety, and efficacy of radiopaque gelified ethanol in the percutaneous treatment of cervical and lumbar disk herniations. MATERIALS AND METHODS: Between September 2010 and August 2013, 80 patients (32 women and 48 men; age range, 18–75 years) were treated for 107 lumbar disk herniations (L2–L3, n = 1; L3–L4, n = 15; L4–L5, n = 53; and L5–S1, n = 38) and 9 cervical disk herniations (C4–C5, n = 2; C5–C6, n = 2; C6–C7, n = 3; and C7–D1, n = 2) by percutaneous intradiskal injection of radiopaque gelified ethanol under fluoroscopic guidance. Thirty-six patients underwent a simultaneous treatment of 2 disk herniations. Patient symptoms were resistant to conservative therapy, with little or no pain relief after 4–6 weeks of physical therapy and drugs. All patients were evaluated by the Visual Analog Scale and the Oswestry Disability Index. RESULTS: Sixty-two of 73 (85%) patients with lumbar disk herniations and 6/7 (83%) patients with cervical disk herniations obtained significant symptom improvement, with a Visual Analog Scale reduction of at least 4 points and an Oswestry Disability Index reduction of at least 40%. Leakage of radiopaque gelified ethanol in the surrounding tissues occurred in 19 patients, however without any clinical side effects. CONCLUSIONS: In our experience, percutaneous intradiskal injection of radiopaque gelified ethanol is safe and effective in reducing the period of recovery from disabling symptoms

    Preferential X Chromosome Inactivation as a Mechanism to Explain Female Preponderance in Myasthenia Gravis

    Get PDF
    Myasthenia gravis (MG) is a neuromuscular autoimmune disease characterized by preva- lence in young women (3:1). Several mechanisms proposed as explanations for gender bias, including skewed X chromosome inactivation (XCI) and dosage or sex hormones, are often involved in the development of autoimmunity. The skewed XCI pattern can lead to an unbalanced expression of some X-linked genes, as observed in several autoimmune disorders characterized by female predominance. No data are yet available regarding XCI and MG. We hypothesize that the preferential XCI pattern may contribute to the female bias observed in the onset of MG, especially among younger women. XCI analysis was performed on blood samples of 284 women between the ages of 20 and 82. XCI was tested using the Human Androgen Receptor Assay (HUMARA). XCI patterns were classified as random (XCI &lt; 75%) and preferential (XCI 75%). In 121 informative patients, the frequency of skewed XCI patterns was 47%, significantly higher than in healthy controls (17%; p 0.00001). Interestingly, the phenomenon was observed mainly in younger patients (&lt;45 years; p 0.00001). Furthermore, considering the XCI pattern and the other clinical characteristics of patients, no signif- icant differences were found. In conclusion, we observed preferential XCI in MG female patients, suggesting its potential role in the aetiology of MG, as observed in other autoimmune diseases in women

    Synchronous pleural and peritoneal malignant mesothelioma : a case report and review of literature

    Get PDF
    The coexistence of mesothelioma and other primary malignancies has been previously reported in literature, but the finding of a pleural mesothelioma with a synchronous peritoneal mesothelioma has not been reported so far. We report a case of a 58-years-old woman that came to our attention for the incidental finding of an inguinal mass. Fine-needle biopsies of the mass and a thoracoscopy with pleural biopsies were performed, after imaging studies showed pleural thickenings suspicious for malignancy. Histological morphology and growth pattern were similar in both cases. Both tumors stained for calretinin, but only the pleural mesothelioma showed positivity for Wilms-Tumor 1 antibody. We tried to demonstrate with molecular biology techniques whether they were synchronous or one was the metastasis of the other, but our studies did not give informative results. The prognosis in this case is poor, and after 6 months the patient is still following a chemotherapy regimen, which is the only practicable approach given the extent of the disease

    Impact of Mutation Density and Heterogeneity on Papillary Thyroid Cancer Clinical Features and Remission Probability

    Get PDF
    BACKGROUND: The need to integrate the classification of cancer with information on the genetic pattern has emerged in recent years for several tumors. METHODS: The genomic background of a large series of 208 papillary thyroid cancers (PTC) followed at a single center was analyzed by a custom MassARRAY genotyping platform, which allows the simultaneous detection of 19 common genetic alterations, including point mutations and fusions. RESULTS: Of the PTCs investigated, 71% were found to have pathognomonic genetic findings, with BRAFV600E and TERT promoter mutations being the most frequent monoallelic alterations (42% and 23.5%, respectively), followed by RET/PTC fusions. In 19.2% of cases, two or more point mutations were found, and the co-occurrence of a fusion with one or more point mutation(s) was also observed. Coexisting BRAFV600E and TERT promoter mutations were detected in a subgroup of aggressive PTCs (12%). A correlation between several aggressive features and mutation density was found, regardless of the type of association (i.e., only point mutations, or point mutations and fusions). Importantly, Kaplan-Meier curves demonstrated that mutation density significantly correlated with a higher risk of persistent disease. In most cases, the evaluation of the allelic frequencies normalized for the cancer cell content indicated the presence of the monoallelic mutation in virtually all tumor cells. A minority of cases was found to harbor low allelic frequencies, consistent with the presence of the mutations in a small subset of cancer cells, thus indicating tumor heterogeneity. Consistently, the presence of coexisting genetic alterations with different allelic frequencies in some tumors suggests that PTC can be formed by clones/subclones with different mutational profiles. CONCLUSIONS: A large mono-institutional series of PTCs was fully genotyped by means of a cost- and time-effective customized panel, revealing a strong impact of mutation density and genetic heterogeneity on the clinical features and on disease outcomes, indicating that an accurate risk stratification of thyroid cancer cannot rely on the analysis of a single genetic event. Finally, the heterogeneity found in some tumors warrants attention, since the occurrence of this phenomenon is likely to affect response to targeted therapies

    Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency

    Get PDF
    Introduction: Intrauterine growth restriction (IUGR) and preeclampsia (PE) are pregnancy disorders characterized by placental insufficiency with oxygen/nutrient restriction and oxidative stress, all influencing mitochondria functionality and number. Moreover, IUGR and PE fetuses are predisposed to diseases later in life, and this might occur through epigenetic alterations. Here we analyze content and methylation of mitochondrial DNA (mtDNA), for the first time in IUGR and PE singleton fetuses, to identify possible alterations in mtDNA levels and/or epigenetic control of mitochondrial loci relevant to replication (D-loop) and functionality (mt-TF/RNR1: protein synthesis, mt-CO1: respiratory chain complex). Methods: We studied 35 term and 8 preterm control, 31 IUGR, 17 PE/IUGR and 17 PE human singleton pregnancies with elective cesarean delivery. Fetal cord blood was collected and evaluated for biochemical parameters. Extracted DNA was subjected to Real-time PCR to assess mtDNA content and analyzed for D-loop, mt-TF/RNR1 and mt-CO1 methylation by bisulfite conversion and pyrosequencing. Results: mtDNA levels were increased in all pathologic groups compared to controls. Mitochondrial loci showed very low methylation levels in all samples; D-loop methylation was further decreased in the most severe cases and associated to umbilical vein pO2. mt-CO1 methylation levels inversely correlated to mtDNA content. Discussion: Increased mtDNA levels in IUGR, PE/IUGR and PE cord blood may denote a fetal response to placental insufficiency. Hypomethylation of D-loop, mt-TF/RNR1 and mt-CO1 loci confirms their relevance in pregnancy
    • …
    corecore