321 research outputs found
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June, 2006 in a orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
Waseda University, Shinjuku, Tokyo, Japa
A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation
A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1
and 100 GeV is presented. The results were obtained with the PAMELA experiment,
which was launched into low-earth orbit on-board the Resurs-DK1 satellite on
June 15th 2006. During 500 days of data collection a total of about 1000
antiprotons have been identified, including 100 above an energy of 20 GeV. The
high-energy results are a ten-fold improvement in statistics with respect to
all previously published data. The data follow the trend expected from
secondary production calculations and significantly constrain contributions
from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl
Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy not accessible from the study of the cosmic-ray nuclear
components due to their differing diffusion and energy-loss processes. However,
when measured near Earth, the effects of propagation and modulation of galactic
cosmic rays in the heliosphere, particularly significant for energies up to at
least 30 GeV, must be properly taken into account. In this paper the electron
(e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009
over six-months time intervals are presented. Fluxes are compared with a
state-of-the-art three-dimensional model of solar modulation that reproduces
the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl
Search for anisotropies in cosmic-ray positrons detected by the PAMELA experiment
The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite
on June 15, 2006. Data collected during the first four years have been used to
search for large-scale anisotropies in the arrival directions of cosmic-ray
positrons. The PAMELA experiment allows for a full sky investigation, with
sensitivity to global anisotropies in any angular window of the celestial
sphere. Data samples of positrons in the rigidity range 10 GV R
200 GV were analyzed. This article discusses the method and the results of the
search for possible local sources through analysis of anisotropy in positron
data compared to the proton background. The resulting distributions of arrival
directions are found to be isotropic. Starting from the angular power spectrum,
a dipole anisotropy upper limit \delta = 0.166 at 95% C.L. is determined.
Additional search is carried out around the Sun. No evidence of an excess
correlated with that direction was found.Comment: The value of the dipole anisotropy upper limit has been changed. The
method is correct but there was a miscalculation in the relative formul
The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV
Precision measurements of the electron component in the cosmic radiation
provide important information about the origin and propagation of cosmic rays
in the Galaxy. Here we present new results regarding negatively charged
electrons between 1 and 625 GeV performed by the satellite-borne experiment
PAMELA. This is the first time that cosmic-ray electrons have been identified
above 50 GeV. The electron spectrum can be described with a single power law
energy dependence with spectral index -3.18 +- 0.05 above the energy region
influenced by the solar wind (> 30 GeV). No significant spectral features are
observed and the data can be interpreted in terms of conventional diffusive
propagation models. However, the data are also consistent with models including
new cosmic-ray sources that could explain the rise in the positron fraction.Comment: 11 pages, 3 figures, accepted for publication in PR
Solar energetic particle events: trajectory analysis and flux reconstruction with PAMELA
The PAMELA satellite experiment is providing first direct measurements of
Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV
in near-Earth space, bridging the low energy data by other space-based
instruments and the Ground Level Enhancement (GLE) data by the worldwide
network of neutron monitors. Its unique observational capabilities include the
possibility of measuring the flux angular distribution and thus investigating
possible anisotropies. This work reports the analysis methods developed to
estimate the SEP energy spectra as a function of the particle pitch-angle with
respect to the Interplanetary Magnetic Field (IMF) direction. The crucial
ingredient is provided by an accurate simulation of the asymptotic exposition
of the PAMELA apparatus, based on a realistic reconstruction of particle
trajectories in the Earth's magnetosphere. As case study, the results for the
May 17, 2012 event are presented.Comment: Conference: The 34th International Cosmic Ray Conference (ICRC2015),
30 July - 6 August, 2015, The Hague, The Netherlands, Volume:
PoS(ICRC2015)08
Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment
The satellite-borne experiment PAMELA has been used to make new measurements
of cosmic ray H and He isotopes. The isotopic composition was measured between
100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium
isotopes over the 23rd solar minimum from July 2006 to December 2007. The
energy spectrum of these components carries fundamental information regarding
the propagation of cosmic rays in the galaxy which are competitive with those
obtained from other secondary to primary measurements such as B/C.Comment: 11 pages, 11 figures, 5 tables. To appear in Astrophysical Journa
The cosmic-ray positron energy spectrum measured by PAMELA
Precision measurements of the positron component in the cosmic radiation
provide important information about the propagation of cosmic rays and the
nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA
has been used to make a new measurement of the cosmic-ray positron flux and
fraction that extends previously published measurements up to 300 GeV in
kinetic energy. The combined measurements of the cosmic-ray positron energy
spectrum and fraction provide a unique tool to constrain interpretation models.
During the recent solar minimum activity period from July 2006 to December 2009
approximately 24500 positrons were observed. The results cannot be easily
reconciled with purely secondary production and additional sources of either
astrophysical or exotic origin may be required.Comment: 14 pages, 4 figures, 1 table. Accepted for publication in Physical
Review Letters. Corrected a typo in the flux units of Table
Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment
The propagation of cosmic rays inside our galaxy plays a fundamental role in
shaping their injection spectra into those observed at Earth. One of the best
tools to investigate this issue is the ratio of fluxes for secondary and
primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive
probe to investigate propagation mechanisms. This paper presents new
measurements of the absolute fluxes of boron and carbon nuclei, as well as the
B/C ratio, from the PAMELA space experiment. The results span the range 0.44 -
129 GeV/n in kinetic energy for data taken in the period July 2006 - March
2008
- …
