7,117 research outputs found
On the Forward-Backward Asymmetry of Leptonic Decays of at the Fermilab Tevatron
We report on a study of the measurement techniques used to determine the
leptonic forward-backward asymmetry of top anti-top quark pairs in Tevatron
experiments with a proton anti-proton initial state. Recently it was shown that
a fit of the differential asymmetry as a function of (where
is the charge of the lepton from the cascade decay of the top quarks
and is the final pseudorapidity of the lepton in the detector frame)
to a hyperbolic tangent function can be used to extrapolate to the full
leptonic asymmetry. We find this empirical method to well reproduce the results
from current experiments, and present arguments as to why this is the case. We
also introduce two more models, based on Gaussian functions, that better model
the distribution. With our better understanding, we find that
the asymmetry is mainly determined by the shift of the mean of the
distribution, the main contribution to the inclusive asymmetry
comes from the region around , and the extrapolation from
the detector-covered region to the inclusive asymmetry is stable via a
multiplicative scale factor, giving us confidence in the previously reported
experimental results.Comment: 26 pages, 12 figure
Driver Drowsiness Detection: A Machine Learning Approach on Skin Conductance
The majority of car accidents worldwide are caused by drowsy drivers. Therefore, it is important to be able to detect when a driver is starting to feel drowsy in order to warn them before a serious accident occurs. Sometimes, drivers are not aware of their own drowsiness, but changes in their body signals can indicate that they are getting tired. Previous studies have used large and intrusive sensor systems that can be worn by the driver or placed in the vehicle to collect information about the driver’s physical status from a variety of signals that are either physiological or vehicle-related. This study focuses on the use of a single wrist device that is comfortable for the driver to wear and appropriate signal processing to detect drowsiness by analyzing only the physiological skin conductance (SC) signal. To determine whether the driver is drowsy, the study tests three ensemble algorithms and finds that the Boosting algorithm is the most effective in detecting drowsiness with an accuracy of 89.4%. The results of this study show that it is possible to identify when a driver is drowsy using only signals from the skin on the wrist, and this encourages further research to develop a real-time warning system for early detection of drowsiness
Measurement of the charge asymmetry of electrons from the decays of W bosons produced in p p ¯ collisions at s =1.96 TeV
Publisher Copyright: © 2021 authors. Published by the American Physical Society.At the Fermilab Tevatron proton-antiproton (pp¯) collider, high-mass electron-neutrino (eν) pairs are produced predominantly in the process pp¯→W(→eν)+X. The asymmetry of the electron and positron yield as a function of their pseudorapidity constrain the slope of the ratio of the u- to d-quark parton distributions versus the fraction of the proton momentum carried by the quarks. This paper reports on the measurement of the electron-charge asymmetry using the full data set recorded by the Collider Detector at Fermilab in 2001-2011 and corresponding to 9.1 fb-1 of integrated luminosity. The measurement significantly improves the precision of the Tevatron constraints on the parton-distribution functions of the proton. Numerical tables of the measurement are provided.Peer reviewe
Single Top Quark Production as a Probe for Anomalous Moments at Hadron Colliders
Single production of top quarks at hadron colliders via fusion is
examined as a probe of possible anomalous chromomagnetic and/or chromoelectric
moment type couplings between the top and gluons. We find that this channel is
far less sensitive to the existence of anomalous couplings of this kind than is
the usual production of top pairs by or fusion. This result is
found to hold at both the Tevatron as well as the LHC although somewhat greater
sensitivity for anomalous couplings in this channel is found at the higher
energy machine.Comment: New discussion and 10 new figures added. uuencoded postscript fil
High-precision measurement of the W boson mass with the CDF II detector
The mass of the W boson, a mediator of the weak force between elementary particles, is tightly constrained by the symmetries of the standard model of particle physics. The Higgs boson was the last missing component of the model. After observation of the Higgs boson, a measurement of the W boson mass provides a stringent test of the model. We measure the W boson mass, M-W, using data corresponding to 8.8 inverse femtobarns of integrated luminosity collected in proton-antiproton collisions at a 1.96 tera-electron volt center-of-mass energy with the CDF II detector at the Fermilab Tevatron collider. A sample of approximately 4 million W boson candidates is used to obtain M-W = 80,433.5 +/- 6.4(stat) +/- 6.9(syst) = 80,433.5 +/- 9.4MeV/c(2), the precision of which exceeds that of all previous measurements combined (stat, statistical uncertainty; syst, systematic uncertainty; MeV, mega-electron volts; c, speed of light in a vacuum). This measurement is in significant tension with the standard model expectation.Peer reviewe
The Search for Supersymmetry at the Tevatron Collider
We review the status of searches for Supersymmetry at the Tevatron Collider.
After discussing the theoretical aspects relevant to the production and decay
of supersymmetric particles at the Tevatron, we present the current results for
Runs Ia and Ib as of the summer of 1997. To appear in the book "Perspectives in
Supersymmetry", edited by G.L. Kane, World Scientific.Comment: 84 pages with 31 figures imbedded using psfig.tex. Uses sprocl.st
- …