32 research outputs found

    A Spinning Anti-de Sitter Wormhole

    Get PDF
    We construct a 2+1 dimensional spacetime of constant curvature whose spatial topology is that of a torus with one asymptotic region attached. It is also a black hole whose event horizon spins with respect to infinity. An observer entering the hole necessarily ends up at a "singularity"; there are no inner horizons. In the construction we take the quotient of 2+1 dimensional anti-de Sitter space by a discrete group Gamma. A key part of the analysis proceeds by studying the action of Gamma on the boundary of the spacetime.Comment: Latex, 28 pages, 7 postscript figures included in text, a Latex file without figures can be found at http://vanosf.physto.se/~stefan/spinning.html Replaced with journal version, minor change

    The Anti-de Sitter Gott Universe: A Rotating BTZ Wormhole

    Get PDF
    Recently it has been shown that a 2+1 dimensional black hole can be created by a collapse of two colliding massless particles in otherwise empty anti-de Sitter space. Here we generalize this construction to the case of a non-zero impact parameter. The resulting spacetime, which may be regarded as a Gott universe in anti-de Sitter background, contains closed timelike curves. By treating these as singular we are able to interpret our solution as a rotating black hole, hence providing a link between the Gott universe and the BTZ black hole. When analyzing the spacetime we see how the full causal structure of the interior can be almost completely inferred just from considerations of the conformal boundary.Comment: 46 pages (LaTeX2e), 13 figures (eps

    Black Holes and Wormholes in 2+1 Dimensions

    Get PDF
    A large variety of spacetimes---including the BTZ black holes---can be obtained by identifying points in 2+1 dimensional anti-de Sitter space by means of a discrete group of isometries. We consider all such spacetimes that can be obtained under a restriction to time symmetric initial data and one asymptotic region only. The resulting spacetimes are non-eternal black holes with collapsing wormhole topologies. Our approach is geometrical, and we discuss in detail: The allowed topologies, the shape of the event horizons, topological censorship and trapped curves.Comment: 23 pages, LaTeX, 11 figure

    Anti-de Sitter Quotients, Bubbles of Nothing, and Black Holes

    Full text link
    In 3+1 dimensions there are anti-de quotients which are black holes with toroidal event horizons. By analytic continuation of the Schwarzschild-anti-de Sitter solution (and appropriate identifications) one finds two one parameter families of spacetimes that contain these quotient black holes. One of these families consists of B-metrics ("bubbles of nothing"), the other of black hole spacetimes. All of them have vanishing conserved charges.Comment: 14 pages, 3 figures. References added, one explanation improve

    Where are the trapped surfaces?

    Full text link
    We discuss the boundary of the spacetime region through each point of which a trapped surface passes, first in some simple soluble examples, and then in the self-similar Vaidya solution. For the latter the boundary must lie strictly inside the event horizon. We present a class of closed trapped surfaces extending strictly outside the apparent horizon.Comment: 6 pages, 1 figure; talk at the Spanish Relativity Meeting ERE09 in Bilba

    Single-exterior black holes and the AdS-CFT conjecture

    Get PDF
    In the context of the conjectured AdS-CFT correspondence of string theory, we consider a class of asymptotically Anti-de Sitter black holes whose conformal boundary consists of a single connected component, identical to the conformal boundary of Anti-de Sitter space. In a simplified model of the boundary theory, we find that the boundary state to which the black hole corresponds is pure, but this state involves correlations that produce thermal expectation values at the usual Hawking temperature for suitably restricted classes of operators. The energy of the state is finite and agrees in the semiclassical limit with the black hole mass. We discuss the relationship between the black hole topology and the correlations in the boundary state, and speculate on generalizations of the results beyond the simplified model theory.Comment: 27 pages, LaTeX, using REVTeX v3.1 with amsfonts and epsf, with two eps figures. (v3: references updated

    Poincare ball embeddings of the optical geometry

    Full text link
    It is shown that optical geometry of the Reissner-Nordstrom exterior metric can be embedded in a hyperbolic space all the way down to its outer horizon. The adopted embedding procedure removes a breakdown of flat-space embeddings which occurs outside the horizon, at and below the Buchdahl-Bondi limit (R/M=9/4 in the Schwarzschild case). In particular, the horizon can be captured in the optical geometry embedding diagram. Moreover, by using the compact Poincare ball representation of the hyperbolic space, the embedding diagram can cover the whole extent of radius from spatial infinity down to the horizon. Attention is drawn to advantages of such embeddings in an appropriately curved space: this approach gives compact embeddings and it distinguishes clearly the case of an extremal black hole from a non-extremal one in terms of topology of the embedded horizon.Comment: 16 pages, 8 figures; CQG accepte

    Gravitational collapse to toroidal, cylindrical and planar black holes

    Full text link
    Gravitational collapse of non-spherical symmetric matter leads inevitably to non-static external spacetimes. It is shown here that gravitational collapse of matter with toroidal topology in a toroidal anti-de Sitter background proceeds to form a toroidal black hole. According to the analytical model presented, the collapsing matter absorbs energy in the form of radiation (be it scalar, neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon decompactification of one or two coordinates of the torus one gets collapsing solutions of cylindrical or planar matter onto black strings or black membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation of some results, to appear in Physical Review

    Supersymmetric isolated horizons

    Full text link
    We construct a covariant phase space for rotating weakly isolated horizons in Einstein-Maxwell-Chern-Simons theory in all (odd) D5D\geq5 dimensions. In particular, we show that horizons on the corresponding phase space satisfy the zeroth and first laws of black-hole mechanics. We show that the existence of a Killing spinor on an isolated horizon in four dimensions (when the Chern-Simons term is dropped) and in five dimensions requires that the induced (normal) connection on the horizon has to vanish, and this in turn implies that the surface gravity and rotation one-form are zero. This means that the gravitational component of the horizon angular momentum is zero, while the electromagnetic component (which is attributed to the bulk radiation field) is unconstrained. It follows that an isolated horizon is supersymmetric only if it is extremal and nonrotating. A remarkable property of these horizons is that the Killing spinor only has to exist on the horizon itself. It does not have to exist off the horizon. In addition, we find that the limit when the surface gravity of the horizon goes to zero provides a topological constraint. Specifically, the integral of the scalar curvature of the cross sections of the horizon has to be positive when the dominant energy condition is satisfied and the cosmological constant Λ\Lambda is zero or positive, and in particular rules out the torus topology for supersymmetric isolated horizons (unless Λ<0\Lambda<0) if and only if the stress-energy tensor TabT_{ab} is of the form such that Tabanb=0T_{ab}\ell^{a}n^{b}=0 for any two null vectors \ell and nn with normalization ana=1\ell_{a}n^{a}=-1 on the horizon.Comment: 26 pages, 1 figure; v2: typos corrected, topology arguments corrected, discussion of black rings and dipole charge added, references added, version to appear in Classical and Quantum Gravit
    corecore