Gravitational collapse of non-spherical symmetric matter leads inevitably to
non-static external spacetimes. It is shown here that gravitational collapse of
matter with toroidal topology in a toroidal anti-de Sitter background proceeds
to form a toroidal black hole. According to the analytical model presented, the
collapsing matter absorbs energy in the form of radiation (be it scalar,
neutrinos, electromagnetic, or gravitational) from the exterior spacetime. Upon
decompactification of one or two coordinates of the torus one gets collapsing
solutions of cylindrical or planar matter onto black strings or black
membranes, respectively. The results have implications on the hoop conjecture.Comment: 6 pages, Revtex, modifications in the title and in the interpretation
of some results, to appear in Physical Review