366 research outputs found
Phase Diagram of Rydberg atoms in a nonequilibrium optical lattice
We study the quantum nonequilibrium dynamics of ultracold three-level atoms
trapped in an optical lattice, which are excited to their Rydberg states via a
two-photon excitation with nonnegligible spontaneous emission. Rich quantum
phases including uniform phase, antiferromagnetic phase and oscillatory phase
are identified. We map out the phase diagram and find these phases can be
controlled by adjusting the ratio of intensity of the pump light to the control
light, and that of two-photon detuning to the Rydberg interaction strength.
When the two-photon detuning is blue-shifted and the latter ratio is less than
1, bistability exists among the phases. Actually, this ratio controls the
Rydberg-blockade and antiblockade effect, thus the phase transition in this
system can be considered as a possible approach to study both effects.Comment: 5 pages,5 figure
Clustering of neuronal potassium channels is independent of their interaction with PSD-95
Voltage-dependent potassium channels regulate membrane excitability and cell–cell communication in the mammalian nervous system, and are found highly localized at distinct neuronal subcellular sites. Kv1 (mammalian Shaker family) potassium channels and the neurexin Caspr2, both of which contain COOH-terminal PDZ domain binding peptide motifs, are found colocalized at high density at juxtaparanodes flanking nodes of Ranvier of myelinated axons. The PDZ domain–containing protein PSD-95, which clusters Kv1 potassium channels in heterologous cells, has been proposed to play a major role in potassium channel clustering in mammalian neurons. Here, we show that PSD-95 colocalizes precisely with Kv1 potassium channels and Caspr2 at juxtaparanodes, and that a macromolecular complex of Kv1 channels and PSD-95 can be immunopurified from mammalian brain and spinal cord. Surprisingly, we find that the high density clustering of Kv1 channels and Caspr2 at juxtaparanodes is normal in a mutant mouse lacking juxtaparanodal PSD-95, and that the indirect interaction between Kv1 channels and Caspr2 is maintained in these mutant mice. These data suggest that the primary function of PSD-95 at juxtaparanodes lies outside of its accepted role in mediating the high density clustering of Kv1 potassium channels at these sites
What can we learn about GW Physics with an elastic spherical antenna?
A general formalism is set up to analyse the response of an arbitrary solid
elastic body to an arbitrary metric Gravitational Wave perturbation, which
fully displays the details of the interaction antenna-wave. The formalism is
applied to the spherical detector, whose sensitivity parameters are thereby
scrutinised. A multimode transfer function is defined to study the amplitude
sensitivity, and absorption cross sections are calculated for a general metric
theory of GW physics. Their scaling properties are shown to be independent of
the underlying theory, with interesting consequences for future detector
design. The GW incidence direction deconvolution problem is also discussed,
always within the context of a general metric theory of the gravitational
field.Comment: 21 pages, 7 figures, REVTeX, enhanced Appendix B with numerical
values and mathematical detail. See also gr-qc/000605
Regular and chaotic interactions of two BPS dyons at low energy
We identify and analyze quasiperiodic and chaotic motion patterns in the time
evolution of a classical, non-Abelian Bogomol'nyi-Prasad-Sommerfield (BPS) dyon
pair at low energies. This system is amenable to the geodesic approximation
which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an
eight-dimensional phase space. We numerically calculate a representative set of
long-time solutions to the corresponding Hamilton equations and analyze
quasiperiodic and chaotic phase space regions by means of Poincare surfaces of
section, high-resolution power spectra and Lyapunov exponents. Our results
provide clear evidence for both quasiperiodic and chaotic behavior and
characterize it quantitatively. Indications for intermittency are also
discussed.Comment: 22 pages, 6 figures (v2 contains a few additional references, a new
paragraph on intermittency and minor stylistic corrections to agree with the
published version
Integrability and chaos: the classical uncertainty
In recent years there has been a considerable increase in the publishing of
textbooks and monographs covering what was formerly known as random or
irregular deterministic motion, now named by the more fashionable term of
deterministic chaos. There is still substantial interest in a matter that is
included in many graduate and even undergraduate courses on classical
mechanics. Based on the Hamiltonian formalism, the main objective of this
article is to provide, from the physicist's point of view, an overall and
intuitive review of this broad subject (with some emphasis on the KAM theorem
and the stability of planetary motions) which may be useful to both students
and instructors.Comment: 24 pages, 10 figure
Spectrin-beta 2 facilitates the selective accumulation of GABAA receptors at somatodendritic synapses
Fast synaptic inhibition is dependent on targeting specific GABAAR subtypes to dendritic and axon initial segment (AIS) synapses. Synaptic GABAARs are typically assembled from α1-3, β and γ subunits. Here, we isolate distinct GABAARs from the brain and interrogate their composition using quantitative proteomics. We show that α2-containing receptors co-assemble with α1 subunits, whereas α1 receptors can form GABAARs with α1 as the sole α subunit. We demonstrate that α1 and α2 subunit-containing receptors co-purify with distinct spectrin isoforms; cytoskeletal proteins that link transmembrane proteins to the cytoskeleton. β2-spectrin was preferentially associated with α1-containing GABAARs at dendritic synapses, while β4-spectrin was associated with α2-containing GABAARs at AIS synapses. Ablating β2-spectrin expression reduced dendritic and AIS synapses containing α1 but increased the number of synapses containing α2, which altered phasic inhibition. Thus, we demonstrate a role for spectrins in the synapse-specific targeting of GABAARs, determining the efficacy of fast neuronal inhibition
Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime
We study stability of a circular orbit of a spinning test particle in a Kerr
spacetime. We find that some of the circular orbits become unstable in the
direction perpendicular to the equatorial plane, although the orbits are still
stable in the radial direction. Then for the large spin case ($S < \sim O(1)),
the innermost stable circular orbit (ISCO) appears before the minimum of the
effective potential in the equatorial plane disappears. This changes the radius
of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure
The detection of Gravitational Waves
This chapter is concerned with the question: how do gravitational waves (GWs)
interact with their detectors? It is intended to be a theory review of the
fundamental concepts involved in interferometric and acoustic (Weber bar) GW
antennas. In particular, the type of signal the GW deposits in the detector in
each case will be assessed, as well as its intensity and deconvolution. Brief
reference will also be made to detector sensitivity characterisation, including
very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For
Proceedings of the ERE-2001 Conference (Madrid, September 2001
- …