5,916 research outputs found

    Unitarity cutting rules for the nucleus excitation and topological cross sections in hard production off nuclei from nonlinear k_t-factorization

    Full text link
    At the partonic level, a typical final state in small-x deep inelastic scattering off nuclei and hard proton-nucleus collisions can be characterized by the multiplicity of color-excited nucleons. Within reggeon field theory, each color-excited nucleon is associated with the unitarity cut of the pomeron exchanged between the projectile and nucleus. In this communication we derive the unitarity rules for the multiplicity of excited nucleons, alias cut pomerons, alias topological cross sections, for typical hard dijet production processes. We demonstrate how the coupled-channel non-Abelian intranuclear evolution of color dipoles, inherent to pQCD, gives rise to the reggeon field theory diagrams for final states in terms of the uncut, and two kinds of cut, pomerons. Upon the proper identification of the uncut and cut pomeron exchanges, the topological cross sections for dijet production follow in a straightforward way from the earlier derived nonlinear k_t - factorization quadratures for the inclusive dijet cross sections. The concept of a coherent (collective) nuclear glue proves extremely useful for the formulation of reggeon field theory vertices of multipomeron - cut and uncut - couplings to particles and between themselves. A departure of our unitarity cutting rules from the ones suggested by the pre-QCD Abramovsky-Kancheli-Gribov rules, stems from the coupled-channel features of intranuclear pQCD. We propose a multiplicity re-summation as a tool for the isolation of topological cross sections for single-jet production.Comment: 53 pages, 16 eps-figures, to appear in Phys. Rev.

    Non-linear BFKL dynamics: color screening vs. gluon fusion

    Full text link
    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken xx is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is Rc0.20.3R_c\simeq 0.2-0.3 fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter Rc2/8B\sim R_c^2/8B, with the diffraction cone slope BB standing for the characteristic size of the interaction region. It should slowly 1/lnQ2\propto 1/\ln Q^2 decrease at large Q2Q^2. Smallness of the ratio Rc2/8BR_c^2/8B makes the non-linear effects rather weak even at lowest Bjorken xx available at HERA. We report the results of our studies of the non-linear BFKL equation which has been generalized to incorporate the running coupling and the screening radius RcR_c as the infrared regulator.Comment: 16 pages, 2 figures, version accepted for publication, references adde

    Final state interaction effects in D(e,ep)D(e,e'p) scattering

    Full text link
    We present a systematic study of the final-state interaction (FSI) effects in D(e,ep)D(e,e'p) scattering in the CEBAF energy range with particular emphasis on the phenomenon of the angular anisotropy of the missing momentum distribution. We find that FSI effects dominate at missing momentum p_m \gsim 1.5 fm1^{-1}. FSI effects in the excitation of the SS-wave state are much stronger than in the excitation of the DD-wave.Comment: LATEX, 11 pages, 5 figures available from the authors on request, KFA-IKP(TH)-1994-3

    Anatomy of the differential gluon structure function of the proton from the experimental data on F_2p

    Get PDF
    The use of the differential gluon structure function of the proton F(x,Q2){\cal F}(x,Q^{2}) introduced by Fadin, Kuraev and Lipatov in 1975 is called upon in many applications of small-x QCD. We report here the first determination of F(x,Q2){\cal F}(x,Q^{2}) from the experimental data on the small-x proton structure function F2p(x,Q2)F_{2p}(x,Q^{2}). We give convenient parameterizations for F(x,Q2){\cal F}(x,Q^{2}) based partly on the available DGLAP evolution fits (GRV, CTEQ & MRS) to parton distribution functions and on realistic extrapolations into soft region. We discuss an impact of soft gluons on various observables. The x-dependence of the so-determined F(x,Q2){\cal F}(x,Q^{2}) varies strongly with Q^2 and does not exhibit simple Regge properties. None the less the hard-to-soft diffusion is found to give rise to a viable approximation of the proton structure function F_{2p}(x,Q^2) by the soft and hard Regge components with intercepts \Delta_{soft}=0 and \Delta_{hard}\sim 0.4.Comment: 37 pages, 25 figure

    Spin dependence of the antinucleon-nucleon interaction

    Get PDF
    The status of our present knowledge on the antinucleon-nucleon interaction at low and medium energies is discussed. Special emphasis is put on aspects related to its spin dependence which are relevant for experiments planned by the PAX collaboration. Predictions for the spin-dependent antiproton-proton cross sections sigma_1 and sigma_2 are presented, utilizing antinucleon-nucleon potential models developed by the Juelich group, and compared to results based on the amplitudes of the Nijmegen partial-wave analysis.Comment: 8 pages, 4 figures, to appear in the proceedings of the 19th International Spin Physics Symposium, September 27 - October 2, 2010, Juelich, German

    Glue in the pomeron from nonlinear k_\perp-factorization

    Full text link
    We derive the nonlinear k_\perp-factorization for the spectrum of jets in high-mass diffractive deep inelastic scattering as a function of three hard scales - the virtuality of the photon Q^2, the transverse momentum of the jet and the saturation scale Q_A. In contrast to all other hard reactions studied so far, we encounter a clash between the two definitions of the glue in the pomeron -- from the inclusive spectrum of leading quarks and the small-\beta evolution of the diffractive cross section. This clash casts a further shadow on customary applications of the familiar collinear factorization to a pQCD analysis of diffractive deep inelastic scattering.Comment: 9 page
    corecore