2,050 research outputs found
Strange Quark Contribution to the Nucleon Spin from Electroweak Elastic Scattering Data
The total contribution of strange quarks to the intrinsic spin of the nucleon
can be determined from a measurement of the strange-quark contribution to the
nucleon's elastic axial form factor. We have studied the strangeness
contribution to the elastic vector and axial form factors of the nucleon, using
elastic electroweak scattering data. Specifically, we combine elastic
and scattering cross section data from the Brookhaven E734
experiment with elastic and quasi-elastic and -He scattering
parity-violating asymmetry data from the SAMPLE, HAPPEx, G0 and PVA4
experiments. We have not only determined these form factors at individual
values of momentum-transfer (), but also have fit the -dependence of
these form factors using simple functional forms. We present the results of
these fits, along with some expectations of how our knowledge of these form
factors can be improved with data from Fermilab experiments.Comment: 3 pages, 1 figure, CIPANP 201
Strangeness contribution to the vector and axial form factors of the nucleon
The strangeness contribution to the vector and axial form factors of the
nucleon is presented for momentum transfers in the range
GeV. The results are obtained via a combined analysis of forward-scattering
parity-violating elastic asymmetry data from the and HAPPEx
experiments at Jefferson Lab, and elastic and scattering
data from Experiment 734 at Brookhaven National Laboratory. The
parity-violating asymmetries measured in elastic scattering at
forward angles establish a relationship between the strange vector form factors
and , with little sensitivity to the strange axial form factor
. On the other hand, elastic neutrino scattering at low is
dominated by the axial form factor, with still some significant sensitivity to
the vector form factors as well. The combination of the two data sets allows
the simultaneous extraction of , , and over a significant
range of for the very first time.Comment: 3 pages, 1 figure, will appear in AIP Conference Proceedings for
PANIC 200
Strange Quark Contribution to the Vector and Axial Form Factors of the Nucleon: Combined Analysis of G0, HAPPEx, and Brookhaven E734 Data
The strange quark contribution to the vector and axial form factors of the
nucleon has been determined for momentum transfers in the range
GeV. The results are obtained via a combined analysis of
forward-scattering, parity-violating elastic asymmetry data from the
G0 and HAPPEx experiments at Jefferson Lab, and elastic and scattering data from Experiment 734 at Brookhaven National Laboratory. The
parity-violating asymmetries measured in elastic scattering at
forward angles establish a relationship between the strange vector form factors
and , with little sensitivity to the strange axial form factor
. On the other hand, elastic neutrino scattering at low is
dominated by the axial form factor, with some significant sensitivity to the
vector form factors as well. Combination of the two data sets allows the
simultaneous extraction of , , and over a significant
range of for the very first time. The -dependence of the strange
axial form factor suggests that the strange quark contribution to the proton
spin, , is negative.Comment: 21 pages, 2 figures, 6 tables, 63 references; revised to fix minor
typos and to add a missing reference; to be submitted to Physical Review
Differential cross section for neutron-proton bremsstrahlung
The neutron-proton bremsstrahlung process is known to be
sensitive to meson exchange currents in the nucleon-nucleon interaction. The
triply differential cross section for this reaction has been measured for the
first time at the Los Alamos Neutron Science Center, using an intense, pulsed
beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered
neutrons were observed at six angles between 12 and 32, and the
recoil protons were observed in coincidence at 12, 20, and
28 on the opposite side of the beam. Measurement of the neutron and
proton energies at known angles allows full kinematic reconstruction of each
event. The data are compared with predictions of two theoretical calculations,
based on relativistic soft-photon and non-relativistic potential models.Comment: 5 pages, 3 figure
Strange form factors of the nucleon in a two-component model
The strange form factors of the nucleon are studied in a two-component model
consisting of a three-quark intrinsic structure surrounded by a meson cloud. A
comparison with the available experimental world data from the SAMPLE, PVA4,
HAPPEX and G0 collaborations shows a good overall agreement. The strange
magnetic moment is found to be positive, 0.315 nm.Comment: 11 pages, 2 tables, 5 figures, accepted for publication in J. Phys.
G. Revised version, new figures, extra table, new results, updated reference
Production/maintenance cooperative scheduling using multi-agents and fuzzy logic
Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions
Accuracy of quantum chemistry structures of chiral tag complexes and the assignment of absolute configuration
The absolute configuration of a molecule can be established by analysis of molecular rotational spectra of the analyte complexed with a small chiral molecule of known configuration. This approach of converting the analyte enantiomers, with identical rotational spectra, into diastereomers that can be distinguished spectroscopically is analogous to chiral derivatization in nuclear magnetic resonance (NMR) spectroscopy. For the rotational chiral tag method, the derivatization uses noncovalent interactions to install the new chiral center and avoids complications due to possible racemization of the analyte when covalent chemistry is used. The practical success of this method rests on the ability to attribute assigned rotational spectra to specific geometries of the diastereomeric homochiral and heterochiral tag complexes formed in the pulsed jet expansion that is used to introduce samples into the microwave spectrometer. The assignment of a molecular structure to an experimental rotational spectrum uses quantum chemistry equilibrium geometries to provide theoretical estimates of the spectrum parameters that characterize the rotational spectrum. This work reports the results of a high-sensitivity rotational spectroscopy study of the complexes formed between (3)-butyn-2-ol and verbenone. The rotational spectra of four homochiral and four heterochiral complexes are assigned. In addition, the 14 distinct, singly-substituted 13C isotopomer spectra of five of these species are assigned in natural abundance. Analysis of these spectra provides direct structural characterization of the complexes through determination of the carbon atom position coordinates. This data set is used to benchmark quantum chemistry calculations of candidate equilibrium geometries of the chiral tag complexes. The quantum chemistry calculations are limited to methods commonly used in the field of rotational spectroscopy. It is shown that the accuracy of the structures from quantum chemistry provides a high-confidence assignment of cluster geometries to the observed spectra. As a result, a high-confidence determination of the analyte (verbenone) absolute configuration is achieved
Viewgraph preparation made easier
Rolls of color-reversal film permit exposure of over 200 viewgraphs on one film loading. Time is saved in film development as roll film lends itself readily to automatic processing
- …