14,547 research outputs found

    Modulus stabilization of generalized Randall Sundrum model with bulk scalar field

    Full text link
    We study the stabilization of inter-brane spacing modulus of generalized warped brane models with a nonzero brane cosmological constant. Employing Goldberger-Wise stabilization prescription of brane world models with a bulk scalar field, we show that the stabilized value of the modulus generally depends on the value of the brane cosmological constant. Our result further reveals that the stabilized modulus value corresponding to a vanishingly small cosmological constant can only resolve the gauge hierarchy problem simultaneously. This in turn vindicates the original Randall-Sundrum model where the 3-brane cosmological constant was chosen to be zero.Comment: 12 Pages, 1 figure, Revtex, Version to appear in Euro. Phys. Let

    Brane-worlds and theta-vacua

    Get PDF
    Reductions from odd to even dimensionalities (545\to 4 or 323\to 2), for which the effective low-energy theory contains chiral fermions, present us with a mismatch between ultraviolet and infrared anomalies. This applies to both local (gauge) and global currents; here we consider the latter case. We show that the mismatch can be explained by taking into account a change in the spectral asymmetry of the massive modes--an odd-dimensional analog of the phenomenon described by the Atiyah-Patodi-Singer theorem in even dimensionalities. The result has phenomenological implications: we present a scenario in which a QCD-like θ\theta-angle relaxes to zero on a certain (possibly, cosmological) timescale, despite the absence of any light axion-like particle.Comment: 44 pages, 4 figure

    Inter-Electrode Capacitances of Triode Valves and their Dependence on the Operating Condition

    Get PDF

    Effect of Solar Activity on Ionosphere and Earth’s Magnetic Field

    Get PDF

    Photoelastic Method for Stress Analysis

    Get PDF
    The discovery of photoelastic effect is credited to Sir David Brewster who published in 1816 an account that clear glass when stressed and examined in polarised light exhi-bited coloured patterns. The corresponding theory was deve-loped by Neuman, Maxwell, Wertheim and other noted physic-ists. In the engineering world, this science first appeared around 1900 and was developed mainly by Profe-ssors A. Mesnager, F.G. Coker and L.N.G. Filon, Prof. Coker made engineering applications of photoelasticity possible mostly through introduction of celluloid for models, repl-acing costly and difficult-to-machine glass models and the use of monochromatic light. Notable among other important workers are Professors F6ppl, Frocht and Neuber. In recent years the development of new synthetic resins possessing desirable photoelastic characteristics, has helped to enlarge applications of the method to a wider variety of problems

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d \to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure

    Experimental Quantification of Entanglement Through Heat Capacity

    Get PDF
    A new experimental realization of heat capacity as an entanglement witness (EW) is reported. Entanglement properties of a low dimensional quantum spin system are investigated by heat capacity measurements performed down to very low temperatures (400mK), for various applied magnetic field values. The experimentally extracted results for the value of heat capacity at zero field matches perfectly with the theoretical estimates of entanglement from model Hamiltonians. The studied sample is a spin 12\frac{1}{2} antiferromagnetic system which shows clear signature of quantum phase transition (QPT) at very low temperatures when the heat capacity is varied as a function of fields at a fixed temperature. The variation of entanglement as a function of field is then explored in the vicinity of the quantum phase transition to capture the sudden loss of entanglement.Comment: 8 pages, 6 figures, To be published in NJ

    Proton-Proton Scattering at Low Velocity

    Get PDF
    corecore