9 research outputs found

    Magnetic anisotropy of single 3d spins on CuN surface

    Full text link
    First-principles calculations of the magnetic anisotropy energy for Mn- and Fe-atoms on CuN/Cu(001) surface are performed making use of the torque method. The easy magnetization direction is found to be different for Mn and Fe atoms in accord with the experiment. It is shown the magnetic anisotropy has a single-ion character and mainly originates from the local magnetic moment of Mn- and Fe-atoms. The uniaxial magnetic anisotropy constants are calculated in reasonable agreement with the experiment

    Magnetoelastic coupling in iron

    Get PDF
    Exchange interactions in {\alpha}- and {\gamma}-Fe are investigated within an ab-initio spin spiral approach. We have performed total energy calculations for different magnetic structures as a function of lattice distortions, related with various cell volumes and the Bain tetragonal deformations. The effective exchange parameters in {\gamma}-Fe are very sensitive to the lattice distortions, leading to the ferromagnetic ground state for the tetragonal deformation or increase of the volume cell. At the same time, the magnetic-structure-independent part of the total energy changes very slowly with the tetragonal deformations. The computational results demonstrate a strong mutual dependence of crystal and magnetic structures in Fe and explain the observable "anti-Invar" behavior of thermal expansion coefficient in {\gamma}-Fe.Comment: Submitted to Phys. Rev.

    Magnetic Moment Softening and Domain Wall Resistance in Ni Nanowires

    Get PDF
    Magnetic moments in atomic scale domain walls formed in nanoconstrictions and nanowires are softened which affects dramatically the domain wall resistance. We perform ab initio calculations of the electronic structure and conductance of atomic-size Ni nanowires with domain walls only a few atomic lattice constants wide. We show that the hybridization between noncollinear spin states leads to a reduction of the magnetic moments in the domain wall. This magnetic moment softening strongly enhances the domain wall resistance due to scattering produced by the local perturbation of the electronic potential.Comment: 4 pages, 5 figure

    Exchange constants for local spin Hamiltonians from tight-binding models

    No full text
    corecore