18 research outputs found

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    Drell-Yan lepton pairs produced in the process pp→â.,"+â.,"-+X through an intermediate γ∗/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2θefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9-10 fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2θefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2θW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2θW=0.22324±0.00033 or equivalently, MW=80.367±0.017 GeV/c2

    Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

    No full text
    We combine six measurements of the inclusive top-quark pair (t(sic)) production cross section (sigma(t)(sic)) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at root s = 1.96 TeV. The data correspond to integrated luminosities of up to 8.8 fb(-1). We obtain a value of sigma tt = 7.60 +/- 0.41 pb for a top-quark mass of m(t) = 172.5 GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35(-0.33)(+0.28) pb at next-to-next-to-leading order and next-to-next-to leading logarithms in perturbative QCD

    Tevatron Constraints on Models of the Higgs Boson with Exotic Spin and Parity Using Decays to Bottom-Antibottom Quark Pairs

    No full text
    Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value J(P) = 0(+). Both collaborations analyzed approximately 10 fb(-1) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with J(P) = 0(-) and J(P) = 2(+) are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the J(P) = 0(-) hypothesis and the J(P) = 2(+) hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the J(P) = 0(-) and J(P) = 2(+) hypotheses, respectively

    Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element V-tb

    No full text
    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb(-1) per experiment. The t-channel cross section is measured to be sigma(t) = 2.25(-0.31)(+0.29) pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s + t channel cross section measurement resulting in sigma(s+t) = 3.30(-0.40)(+0.52) pb, without assuming the standard model value for the ratio sigma(s)/sigma(t). The resulting value of the magnitude of the top-to-bottom quark coupling is vertical bar V-tb vertical bar = 1.02(-0.05)(+0.06), corresponding to vertical bar V-tb vertical bar > 0.92 at the 95% C. L

    Combination of CDF and D0 measurements of the W boson helicity in top quark decays

    No full text
    We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4 fb(-1) of p (p) over bar collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f(0)) and right-handed (f(+)) helicities, we find f(0) = 0.722 +/- 0.081[+/- 0.062(stat) +/- 0.052(syst)] and f(+) = -0.033 +/- 0.046[+/- 0.034(stat) +/- 0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f(0) = 0.682 +/- 0.057[+/- 0.035(stat) +/- 0.046(syst)] for fixed f(+) and f(+) = -0.015 +/- 0.035[+/- 0.018(stat) +/- 0.030(syst)] for fixed f(0). The results are consistent with standard model expectations

    Searching for solar KDAR with DUNE

    No full text
    The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions

    Higgs boson studies at the Tevatron

    No full text
    We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c(2) produced in the gluon-gluon fusion, WH, ZH, t (t) over barH, and vector boson fusion processes, and decaying in the H -> b (b) over bar, H -> W+W-, H -> ZZ, H -> tau(+)tau(-), and H -> gamma gamma modes. The data correspond to integrated luminosities of up to 10 fb(-1) and were collected at the Fermilab Tevatron in p (p) over bar collisions at root s = 1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c(2). The local significance corresponds to 3.0 standard deviations at m(H) = 125 GeV/c(2), consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for H -> b (b) over bar, H -> W+W-, H -> tau(+)tau(-), and H -> gamma gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c(2)

    Observation of s-Channel Production of Single Top Quarks at the Tevatron

    No full text
    We report the first observation of single-top-quark production in the s channel through the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb(-1) per experiment. The measured cross section is sigma(s) = 1.29(-0.24)(+0.26) pb. The probability of observing a statistical fluctuation of the background to a cross section of the observed size or larger is 1.8 x 10(-10), corresponding to a significance of 6.3 standard deviations for the presence of an s-channel contribution to the production of single-top quarks

    Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration

    No full text
    The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach

    Volume IV The DUNE far detector single-phase technology

    No full text
    corecore