124 research outputs found

    Towards a self-collision aware teleoperation framework for compound robots

    Get PDF
    This work lays the foundations of a self-collision aware teleoperation framework for compound robots. The need of an haptic enabled system which guarantees self-collision and joint limits avoidance for complex robots is the main motivation behind this paper. The objective of the proposed system is to constrain the user to teleoperate a slave robot inside its safe workspace region through the application of force cues on the master side of the bilateral teleoperation system. A series of simulated experiments have been performed on the Kuka KMRiiwa mobile robot; however, due to its generality, the framework is prone to be easily extended to other robots. The experiments have shown the applicability of the proposed approach to ordinary teleoperation systems without altering their stability properties. The benefits introduced by this framework enable the user to safely teleoperate whichever complex robotic system without worrying about self-collision and joint limitations

    Enhancing airplane boarding procedure using vision based passenger classification

    Get PDF
    This paper presents the implementation of a new boarding strategy that exploits passenger and hand-luggage detection and classification to reduce the boarding time onto an airplane. A vision system has the main purpose of providing passengers data, in terms of agility coefficient and hand-luggage size to a seat assignment algorithm. The software is able to dynamically generate the passenger seat that reduces the overall boarding time while taking into account the current airplane boarding state. The motivation behind this work is to speed up of the passenger boarding using the proposed online procedure of seat assignment based on passenger and luggage classification. This method results in an enhancement of the boarding phase, in terms of both time and passenger experience. The main goal of this work is to demonstrate the usability of the proposed system in real conditions proving its performances in terms of reliability. Using a simple hardware and software setup, we performed several experiments recreating a gate entrance mock up and comparing the measurements with ground truth data to assess the reliability of the system

    A fast airplane boarding strategy using online seat assignment based on passenger classification

    Get PDF
    The minimization of the turnaround time, the duration which an aircraft must remain parked at the gate, is an important goal of airlines to increase their profitability. This work introduces a procedure to minimize of the turnaround time by speeding up the boarding time in passenger aircrafts. This is realized by allocating the seat numbers adaptively to passengers when they pass the boarding gate and not before. Using optical sensors, an agility measure is assigned to each person and also a measure to characterize the size of her/his hand-luggage. Based on these two values per passenger and taking into account additional constraints, like reserved seats and the belonging to a group, a novel seat allocation algorithm is introduced to minimize the boarding time. Extensive simulations show that a mean reduction of the boarding time with approximately 15% is achieved compared to existing boarding strategies. The costs of introducing the proposed procedure are negligible, while the savings of reducing the turnaround time are enormous, considering that the costs generated by inactive planes on an airport are estimated to be about 30 $ per minute

    Ligation of the intersphincteric fistula tract (LIFT) to treat anal fistula: early results from a prospective observational study

    Get PDF
    Ligation of the intersphincteric tract (LIFT), a novel sphincter-saving technique, has been recently described with promising results. Literature data are still scant. In this prospective observational study, we present our experience with this technique

    Image analysis for automatic characterization of polyhydroxyalcanoates granules

    Get PDF
    A new monitoring approach for polyhydroxyalcanoates (PHA) granules identification and characterization based on image analysis procedures is proposed. PHA granules were analyzed by Sudan Black B (SBB) staining in an enhanced biological phosphorus removal (EBPR) system. Color images captured on an optical microscope were analyzed through quantitative image analysis. The distribution of PHA granules was estimated by determination of the proportion of blue-black pixels. A relationship was found between image analysis parameters and PHA concentration. In conclusion, it may be inferred that the present image analysis procedure is suitable to quantify PHA granules in SBB staining images and a promising alternative to standard analysis

    p53 Regulates Progenitor Cell Quiescence and Differentiation in the Airway

    Get PDF
    SummaryMechanisms that regulate progenitor cell quiescence and differentiation in slowly replacing tissues are not fully understood. Here, we demonstrate that the tumor suppressor p53 regulates both proliferation and differentiation of progenitors in the airway epithelium. p53 loss decreased ciliated cell differentiation and increased the self-renewal and proliferative capacity of club progenitors, increasing epithelial cell density. p53-deficient progenitors generated a pseudostratified epithelium containing basal-like cells in vitro and putative bronchioalveolar stem cells in vivo. Conversely, an additional copy of p53 increased quiescence and ciliated cell differentiation, highlighting the importance of tight regulation of p53 levels. Using single-cell RNA sequencing, we found that loss of p53 altered the molecular phenotype of progenitors and differentially modulated cell-cycle regulatory genes. Together, these findings reveal that p53 is an essential regulator of progenitor cell behavior, which shapes our understanding of stem cell quiescence during homeostasis and in cancer development

    The ARROWS project: Adapting and developing robotics technologies for underwater archaeology

    Get PDF
    ARchaeological RObot systems for the World's Seas (ARROWS) EU Project proposes to adapt and develop low-cost Autonomous Underwater Vehicle (AUV) technologies to significantly reduce the cost of archaeological operations, covering the full extent of archaeological campaign. ARROWS methodology is to identify the archaeologists requirements in all phases of the campaign and to propose related technological solutions. Starting from the necessities identified by archaeological project partners in collaboration with the Archaeology Advisory Group, a board composed of European archaeologists from outside ARROWS, the aim is the development of a heterogeneous team of cooperating AUVs capable of comply with a complete archaeological autonomous mission. Three new different AUVs have been designed in the framework of the project according to the archaeologists' indications: MARTA, characterized by a strong hardware modularity for ease of payload and propulsion systems configuration change; U-C AT, a turtle inspired bio-mimetic robot devoted to shipwreck penetration and A-Size AUV, a vehicle of small dimensions and weight easily deployable even by a single person. These three vehicles will cooperate within the project with AUVs already owned by ARROWS partners exploiting a distributed high-level control software based on the World Model Service (WMS), a storage system for the environment knowledge, updated in real-time through online payload data process, in the form of an ontology. The project includes also the development of a cleaning tool for well-known artifacts maintenance operations. The paper presents the current stage of the project that will lead to overall system final demonstrations, during Summer 2015, in two different scenarios, Sicily (Italy) and Baltic Sea (Estonia

    Reliable measurement of E. coli single cell fluorescence distribution using a standard microscope set-up

    Get PDF
    Background: Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. Methods: A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. Results: The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. Conclusions: The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification)

    Impact of gastrointestinal side effects on patients’ reported quality of life trajectories after radiotherapy for prostate cancer: Data from the prospective, observational pros-it CNR study

    Get PDF
    Radiotherapy (RT) represents an important therapeutic option for the treatment of localized prostate cancer. The aim of the current study is to examine trajectories in patients’ reported quality of life (QoL) aspects related to bowel function and bother, considering data from the PROState cancer monitoring in ITaly from the National Research Council (Pros-IT CNR) study, analyzed with growth mixture models. Data for patients who underwent RT, either associated or not associated with androgen deprivation therapy, were considered. QoL outcomes were assessed over a 2-year period from the diagnosis, using the Italian version of the University of California Los Angeles-Prostate Cancer Index (Italian-UCLA-PCI). Three trajectories were identified for the bowel function; having three or more comorbidities and the use of 3D-CRT technique for RT were associated with the worst trajectory (OR = 3.80, 95% CI 2.04–7.08; OR = 2.17, 95% CI 1.22–3.87, respectively). Two trajectories were identified for the bowel bother scores; diabetes and the non-Image guided RT method were associated with being in the worst bowel bother trajectory group (OR = 1.69, 95% CI 1.06–2.67; OR = 2.57, 95% CI 1.70–3.86, respectively). The findings from this study suggest that the absence of comorbidities and the use of intensity modulated RT techniques with image guidance are related with a better tolerance to RT in terms of bowel side effects
    • …
    corecore