1,231 research outputs found

    A Note On Line Graphs

    Get PDF
    In this note we define two generalizations of the line graph and obtain some results. Also, we mark some open problems

    Non-additivity of van der Waals forces on liquid surfaces

    Full text link
    We present an approach for modeling nanoscale wetting and dewetting of liquid surfaces that exploits recently developed, sophisticated techniques for computing van der Waals (vdW) or (more generally) Casimir forces in arbitrary geometries. We solve the variational formulation of the Young--Laplace equation to predict the equilibrium shapes of fluid--vacuum interfaces near solid gratings and show that the non-additivity of vdW interactions can have a significant impact on the shape and wetting properties of the liquid surface, leading to very different surface profiles and wetting transitions compared to predictions based on commonly employed additive approximations, such as Hamaker or Derjaguin approximations.Comment: 5 pages (including abstract, acknowledgments, and references), 3 figure

    A PRE TEST AND POST TEST DESIGN TO ASSESS THE EFFICACY OF VIRECHANA AND ARDHAMATRIKA BASTI IN GOUTY ARTHRITIS W S R TO VATARAKTA

    Get PDF
    The health of an individual depends on his diet and lifestyle. The rapid modernization, fast food culture, stressful and speedy life leads too many serious health issues. Among such health issues Vatarakta is one. A chronic disease or illness is defined as a condition which develops gradually through years because of frequent and continuous exposure to abnormal dietary, lifestyle or environmental factors. In Vatarakta these lifestyle changes causing inflammatory changes to joint leading to pain and swelling. Vatarakta in Ayurveda is considered as one of chronic illness which is commonly seen affecting nearly 14-17% of population every year. Vatarakta is more distressing and common metabolic disorder prevalent in present era. Vatarakta is correlated with gout in modern science. Gout is an abnormality of purine metabolism causes hyperuricemia and deposition of monosodium urate crystals in joints. Pain is predominant symptom of gout; it disturbs day-to-day life of the patient. Shodhana Chikitsa is considered as the best line of treatment. Treatment aims to eliminate the Sanchita mala (Serum uric Acid) and to bring back Vata and Raktha to its normalcy. Among the Shodhana procedures Vasti and Virechana are considered as the main line of treatment for Vatarakta. Here in this study 100 subjects are randomly selected and grouped in 2 groups A and B, in Group A Ardhamatrika Niruha basti and in Group B Nimbamruthadi eranda Virechana is done. Both the therapy shows significant results in patients of Vatarakta. But after statistical test and percentage wise results Basti group shows more improvement in uric acid levels and other symptoms

    Fluctuational Electrodynamics in Atomic and Macroscopic Systems: van der Waals Interactions and Radiative Heat Transfer

    Full text link
    We present an approach to describing fluctuational electrodynamic (FED) interactions, particularly van der Waals (vdW) interactions as well as radiative heat transfer (RHT), between material bodies of vastly different length scales, allowing for going between atomistic and continuum treatments of the response of each of these bodies as desired. Any local continuum description of electromagnetic (EM) response is compatible with our approach, while atomistic descriptions in our approach are based on effective electronic and nuclear oscillator degrees of freedom, encapsulating dissipation, short-range electronic correlations, and collective nuclear vibrations (phonons). While our previous works using this approach have focused on presenting novel results, this work focuses on the derivations underlying these methods. First, we show how the distinction between "atomic" and "macroscopic" bodies is ultimately somewhat arbitrary, as formulas for vdW free energies and RHT look very similar regardless of how the distinction is drawn. Next, we demonstrate that the atomistic description of material response in our approach yields EM interaction matrix elements which are expressed in terms of analytical formulas for compact bodies or semianalytical formulas based on Ewald summation for periodic media; we use this to compute vdW interaction free energies as well as RHT powers among small biological molecules in the presence of a metallic plate as well as between parallel graphene sheets in vacuum, showing strong deviations from conventional macroscopic theories due to the confluence of geometry, phonons, and EM retardation effects. Finally, we propose formulas for efficient computation of FED interactions among material bodies in which those that are treated atomistically as well as those treated through continuum methods may have arbitrary shapes, extending previous surface-integral techniques.Comment: 25 pages, 5 figures, 2 appendice

    Development and Wind Tunnel Evaluation of a SMA Based Trim Tab Actuator for a Civil Aircraft

    Get PDF
    This paper presents about the development and wind tunnel evaluation of an SMA based smart trim tab for a typical 2 seater civil aircraft. SMA actuator was housed in the port side of the elevator for actuating the trim tab. Wind tunnel tests were conducted on a full scale Horizontal Tail model with Elevator and Trim Tab at free stream speeds of 25, 35 & 45 m/sec and also for a number of deflections of the elevator (30° up, 0° neutral & 25° down) and trim-tab 11° & 21° up and 15° & 31° down). To measure the hinge moment experienced by the trim-tab at various test conditions, two miniaturized balances were designed and fabricated. Gain scheduled proportional integral controller was developed to control the SMA actuated smart trim tab. It was confirmed during the tests that the trim-tab could be controlled at the desired position against the aerodynamic loads acting on it for the various test conditions

    Impact of nuclear vibrations on van der Waals and Casimir interactions at zero and finite temperature

    Get PDF
    Van der Waals (vdW) and Casimir interactions depend crucially on material properties and geometry, especially at molecular scales, and temperature can produce noticeable relative shifts in interaction characteristics. Despite this, common treatments of these interactions ignore electromagnetic retardation, atomism, or contributions of collective mechanical vibrations (phonons) to the infrared response, which can interplay with temperature in nontrivial ways. We present a theoretical framework for computing electromagnetic interactions among molecular structures, accounting for their geometry, electronic delocalization, short-range interatomic correlations, dissipation, and phonons at atomic scales, along with long-range electromagnetic interactions among themselves or in the vicinity of continuous macroscopic bodies. We find that in carbon allotropes, particularly fullerenes, carbyne wires, and graphene sheets, phonons can couple strongly with long-range electromagnetic fields, especially at mesoscopic scales (nanometers), to create delocalized phonon polaritons that significantly modify the infrared molecular response. These polaritons especially depend on the molecular dimensionality and dissipation, and in turn affect the vdW interaction free energies of these bodies above a macroscopic gold surface, producing nonmonotonic power laws and nontrivial temperature variations at nanometer separations that are within the reach of current Casimir force experiments.Comment: 11 pages, 4 figures (3 single-column, 1 double-column), 2 appendice
    corecore