355 research outputs found
Production and characterization of xanthan gum by bacterial isolates
Xanthan gum is a microbial polymer synthesised by a plant pathogen of the Xanthomonas genus. Due to its rheological characteristics and water solubility, it is of enormous commercial significance and has been utilized as a thickening and stabilizing agent in a variety of industries. In this work, the potential for synthesizing xanthan gum in Xanthomonas species isolated from black rot spotted tomatoes, peppers, mango, and bananas was investigated. After washing the leaves in saline solution, a tenfold dilution was made, and aliquots (1 ml) were placed on a nutrient agar plate and incubated for 48 h at 25 Β°C. Gram staining was made on colonies that appeared yellow. An emulsification test was carried out on bacteria that were gram-negative rods. Potential xanthan gum producers include isolates displaying yellow colonies, gram-negative rods, and stable emulsions on carbon-enriched media. These requirements were satisfied by eight (61.5 %) of the isolates tested. Biochemical analysis of the isolates indicated that they were Xanthomonas species, and they were coded appropriately (BX2, BX3, PX4, MX6, PX7, MX8, TM9, TX11). The molecular analysis of the best two isolates (TM9 and BX3) revealed that they were Xanthomonas campestris and Stenotrophomonas maltophilia. After 96 h of incubation, Xanthomonas campestris and Stenotrophomonas maltophilia were the most effective xanthan gum producers, generating 2.10 g/l and 1.63 g/l of xanthan gum, respectively. The apparent viscosity (AV), emulsification index (IE24), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to characterize the xanthan gums produced. The findings indicated little or no differences between commercially synthesized xanthan gum and produced xanthan gum. However, xanthan gum from Stenotrophomonas maltophilia has a higher apparent viscosity (660.6 mPas) that is above those of Xanthomonas campestris (526.1 mPas) and commercial xanthan gum (411.3 mPas), respectively. The gums showed structural similarities and exhibited good thermal stability. These findings indicate that Xanthomonas species are viable options for xanthan gum production
Electronic excitations stabilized by a degenerate electron gas in semiconductors
Excitons in semiconductors and insulators consist of fermionic subsystems, electrons and holes, whose attractive interaction facilitates bound quasiparticles with quasi-bosonic character. In the presence of a degenerate electron gas, such excitons dissociate due to free carrier screening. Despite their absence, we found pronounced emission traces in the below-band-edge region of bulk, germanium-doped GaN up to a temperature of 100βK, mimicking sharp spectral features at high free electron concentrations (3.4E19β8.9E19βcmβ3). Our interpretation of the data suggests that a degenerate, three-dimensional electron gas stabilizes a novel class of quasiparticles, which we name collexons. These many-particle complexes are formed by exchange of electrons with the Fermi gas. The potential observation of collexons and their stabilization with rising doping concentration is enabled by high crystal quality due to the almost ideal substitution of host atoms with dopants.DFG, 43659573, SFB 787: Semiconductor Nanophotonics: Materials, Models, Device
Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders
Background
Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families.
Methods
Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter Ξ³-aminobutyric acid (GABA).
Results
A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals.
Conclusions
This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts
Anti-trypanosomal Activity of Bufonidae (Toad) Venom Crude Extract on Trypanosoma brucei brucei in Swiss Mice
Trypanosomiasis afflicts about 6 ~ 7 million people globally and to a large extent impedes livestock production in Africa. Naturally, trypanosomal parasites undergo genetic mutation and have developed resistance over a wide range of therapies. The utilization of animals and plants products has presented therapeutic potential for identifying novel anti-trypanosomal drugs. This study evaluated toad venom for anti-trypanosomal potency invivo in Swiss mice. Toads were collected from July to August 2019. The acute oral toxicity and biochemical characterization of the toad venom were determined. The experimental mice were administered various doses (130 mg/kg, 173 mg/kg and 217 mg/kg) of the toad venom crude extract and 0.75 mg/mL of Diamizan Plus standard drug for the treatment of trypanosomiasis, once daily for 3 days. The in-vivo anti-trypanosomal activity was evaluated by a curative test, after infecting the mice with Trypanosoma brucei brucei. The pre-patent period was 72 hours before treatment commenced. The overall results showed that trypanosomal load was highest in the control group while the group treated with Diamizan drug had the least trypanosomal load. As such, the mean trypanosomal load in relation to treatments showed a very high significant difference (P0.05) across treatment groups. The over 50% reduction in the trypanosomal load in the 130 mg/kg group in comparison with the control group brings to bare the anti-trypanosomal potency of the toad venom. The anti-trypanosomal activity demonstrated by the toad venom has provided basis for development of new therapeutic agents from different toad species. The study recommends further studies (both in-vivo and invitro) followed by the characterization of the active compounds present in the toad venom responsible for the anti-tyrpanosomal activity observed alongside the management and conservation of these species
Composition and Distribution of Mosquito Vectors in a Peri-Urban Community Surrounding an Institution of Learning in Lafia Metropolis, Nasarawa State, Central Nigeria
Vector surveillance is very key in solving mosquito-borne health problems in Nigeria. To this end, the composition and distribution of mosquito vectors in a peri-urban community surrounding an institution of learning in Lafia metropolis, Nasarawa State, Central Nigeria was carried out between December 2016 and June 2017. The Prokopack Aspirator was used to collect indoor resting mosquitoes between 6:00 a.m. and 9:00 a.m. from 30 randomly selected houses. Mosquitoes collected were knocked down and transferred into a well labelled petri-dish and taken to the laboratory for processing. A total of 664 mosquitoes were collected which spread across Culex quinquefasciatus 572 (86.14%), Anopheles gambiae 88 (13.25%) and Aedes aegypti 4 (0.60%). The abundance of mosquitoes in relation to seasons, species, sex, abdominal conditions as well as transmission indices across seasons significantly varied (P 0.05). The inhabitants of the area should ensure that all drainages flow through so as to reduce mosquito breeding grounds. Also, members of the community should always protect themselves by sleeping under insecticide treated bed nets
Comprehensive Biostatistical Analysis of CpG Island Methylator Phenotype in Colorectal Cancer Using a Large Population-Based Sample
The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors
Collagen mRNA levels changes during colorectal cancer carcinogenesis
<p>Abstract</p> <p>Background</p> <p>Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different Ξ±(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of <it>type IV collagen (Ξ±1/Ξ±4/Ξ±6) </it>and <it>type VII collagen (Ξ±1) </it>during colorectal cancer carcinogenesis.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>Ξ±1(IV), Ξ±4(IV), Ξ±6(IV), and Ξ±1(VII) </it>in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals. In addition, corresponding tissue was examined from healthy volunteers (n = 20). mRNA levels were normalized to <it>Ξ²-actin</it>. Immunohistochemical analysis of the distributions of type IV and type VII collagens were performed on normal and affected tissues from colorectal cancer patients.</p> <p>Results</p> <p>The <it>Ξ±1(IV) </it>and <it>Ξ±1(VII) </it>mRNA levels were statistically significantly higher in colorectal cancer tissue (p < 0.001) as compared to corresponding tissue from healthy controls. This is an early event as tissue from adenomas also displayed a higher level. There were small changes in the levels of <it>Ξ±4(IV)</it>. The level of <it>Ξ±6(IV) </it>was 5-fold lower in colorectal cancer tissue as compared to healthy individuals (p < 0.01). The localisation of type IV and type VII collagen was visualized by immunohistochemical staining.</p> <p>Conclusion</p> <p>Our results suggest that the down-regulation of <it>Ξ±6(IV</it>) mRNA coincides with the acquisition of invasive growth properties, whereas <it>Ξ±1(IV) </it>and <it>Ξ±1(VII) </it>mRNAs were up-regulated already in dysplastic tissue. There are no differences in collagen expression between tissues from healthy individuals and normal tissues from affected individuals.</p
Pharmacogenetic Associations of MMP9 and MMP12 Variants with Cardiovascular Disease in Patients with Hypertension
MMP-9 and -12 function in tissue remodeling and may play roles in cardiovascular disease (CVD). We assessed associations of four MMP polymorphisms and three antihypertensive drugs with cardiovascular outcomes.Hypertensives (nβ=β42,418) from a double-blind, randomized, clinical trial were randomized to chlorthalidone, amlodipine, lisinopril, or doxazosin treatment (mean follow up, 4.9 years). The primary outcome was coronary heart disease (CHD). Secondary outcomes included combined CHD, all CVD outcomes combined, stroke, heart failure (HF), and mortality. Genotype-treatment interactions were tested.β=β0.015). for CHD and composite CVD. The data suggest that these genes may provide useful clinical information with respect to treatment decisions
- β¦