85,554 research outputs found

    Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    Full text link
    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.Comment: version compatible with with the erratum in Acta Physica Polonic

    MODULATION OF CALCIUM CHANNELS IN ARTERIAL SMOOTH-MUSCLE CELLS BY DIHYDROPYRIDINE ENANTIOMERS

    Get PDF
    The actions of the optical enantiomers of BAY K 8644 and Sandoz 202,791 were studied on barium inward currents recorded using the whole-cell configuration of the patch clamp technique from enzymatically isolated smooth muscle cells from the rabbit ear artery. The enantiomers were applied by bath perfusion or rapidly by a concentration jump technique, which enabled the study of drug action under equilibrium and nonequilibrium conditions. A larger effect of agonists was seen on peak inward current in 110 mM Ba when small rather than large depolarizations were applied. The midpoint voltage of the steady-state inactivation curve of IBa was -12.8 +/- 1.9 mV (n = 4) in the absence of drug, -16.4 +/- 2.5 mV (n = 4) in 1 microM (+)202,791, and -31.4 +/- 0.4 mV (n = 4) in 1 microM (-)202,791. The rate of onset of action of the agonist and antagonist enantiomers of BAY K 8644 and Sandoz 202,791 was studied by rapid application during 20-ms depolarizing steps from different holding potentials to +30 mV at 1 or 0.2 Hz. The drugs were applied as concentration jumps between two single pulses of a pulse train. The rates of onset of drug action on peak IBa during a 1-Hz pulse train were concentration dependent over the range of 100 nM-3 microM for both (+) and (-)202,791. The rate of onset of inhibition of peak current by antagonist enantiomers was not significantly influenced by the test pulse frequency. At a holding potential of -60 mV, the onset rate of the increase in peak IBa on application of 1 microM of agonist enantiomers (+)202,791 or (-)BAY K 8644 during a train of pulses occurred with mean time constants of 2.1 +/- 0.7 s (n = 7) and 2.3 +/- 0.2 s (n = 4), respectively. The onset of current increase on application of 1 microM (+)202,791 during a single voltage clamp step to 20 mV was faster, with a mean time constant of 380 +/- 80 ms (n = 3)

    Reply to a Commentary "Asking photons where they have been without telling them what to say"

    Get PDF
    Interesting objections to conclusions of our experiment with nested interferometers raised by Salih in a recent Commentary are analysed and refuted.Comment: Published version (Frontiers in Physics) to revised version of the Commentar

    Quantum thermodynamics at critical points during melting and solidification processes

    Full text link
    We systematically explore and show the existence of finite-temperature continuous quantum phase transition (CTQPT) at a critical point, namely, during solidification or melting such that the first-order thermal phase transition is a special case within CTQPT. Infact, CTQPT is related to chemical reaction where quantum fluctuation (due to wavefunction transformation) is caused by thermal energy and it can occur maximally for temperatures much higher than zero Kelvin. To extract the quantity related to CTQPT, we use the ionization energy theory and the energy-level spacing renormalization group method to derive the energy-level spacing entropy, renormalized Bose-Einstein distribution and the time-dependent specific heat capacity. This work unambiguously shows that the quantum phase transition applies for any finite temperatures.Comment: To be published in Indian Journal of Physics (Kolkata

    Update of MRST parton distributions.

    Get PDF
    We discuss the latest update of the MRST parton distributions in response to the most recent data. We discuss the areas where there are hints of difficulties in the global fit, and compare to some other updated sets of parton distributions, particularly CTEQ6. We briefly discuss the issue of uncertainties associated with partons

    Tukushi modulates Xnr2, FGF, and and BMP signalling: Regulation of Xenopus Germ Layer Formation

    Get PDF
    BACKGROUND: Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that Xenopus Tsukushi (X-TSK), a member of the secreted small leucine rich repeat proteoglycan (SLRP) family, is expressed in ectoderm, endoderm, and the organizer during early development. We have previously reported that X-TSK binds to and inhibits BMP signaling in cooperation with chordin. We now demonstrate two novel interactions: X-TSK binds to and inhibits signaling by FGF8b, in addition to binding to and enhancement of Xnr2 signaling. This signal integration by X-TSK at the extracellular level has an important role in germ layer formation and patterning. Vegetally localized X-TSK potentiates endoderm formation through coordination of BMP, FGF and Xnr2 signaling. In contrast, X-TSK inhibition of FGF-MAPK signaling blocks ventrolateral mesoderm formation, while BMP inhibition enhances organizer formation. These actions of X-TSK are reliant upon its expression in endoderm and dorsal mesoderm, with relative exclusion from ventrolateral mesoderm, in a pattern shaped by FGF signals. CONCLUSIONS/SIGNIFICANCE: Based on our observations, we propose a novel mechanism by which X-TSK refines the field of positional information by integration of multiple pathways in the extracellular space
    corecore