6,929 research outputs found

    Universal Finite-Size Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field,

    Full text link
    The finite-size scaling function of the magnetization of the ferromagnetic Heisenberg chain is argued to be universal with respect to the magnitude of the spin. The finite-size scaling function is given explicitly by an analytical calculation in the classical limit S=∞.S=\infty. The universality is checked for S=1/2S=1/2 and 11 by means of numerical calculations. Critical exponents are obtained as well. It is concluded that this universal scaling function originates in the universal behavior of the correlation function.Comment: 14 pages (revtex 2.0) + 8 PS figures upon request

    Spin polarization of light atoms in jellium: Detailed electronic structures

    Full text link
    We revisit the problem of the spontaneous magnetization of an {\em sp} impurity atom in a simple metal host. The main features of interest are: (i) Formation of the spherical spin density/charge density wave around the impurity; (ii) Considerable decrease in the size of the pseudoatom in the spin-polarized state as compared with the paramagnetic one, and (iii) Relevance of the electron affinity of the isolated atom to this spin polarization, which is clarified by tracing the transformation of the pseudoatom into an isolated negative ion in the low-density limit of the enveloping electron gas.Comment: 4 pages, 4 figures, accepted to Phys. Rev.

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Charge-fluctuation contribution to the Raman response in superconducting cuprates

    Full text link
    We calculate the Raman response contribution due to collective modes, finding a strong dependence on the photon polarizations and on the characteristic wavevectors of the modes. We compare our results with recent Raman spectroscopy experiments in underdoped cuprates, La2−xSrxCuO4La_{2-x}Sr_xCuO_4 and (Y1.97Ca0.3)Ba2CuO6.05(Y_{1.97}Ca_{0.3})Ba_2CuO_{6.05}, where anomalous low-energy peaks are observed, which soften upon lowering the temperature. We show that the specific dependence on doping and on photon polarizations of these peaks is only compatible with charge collective excitations at finite wavelength.Comment: 5 pages, 3 figure

    Halo-Galaxy Lensing: A Full Sky Approach

    Get PDF
    The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counter-intuitively, errors in the conventionally used flat-sky approximation remain at a % level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few % level at the baryonic acoustic oscillation scales for lensing halos of z∼0.2z\sim 0.2, and comparable with the effect of primordial non-Gaussianity with fNL∼10f_{\rm NL}\sim 10 at large separations. Our results allow to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys.Comment: 12 pages, 4 figure

    Tests of Gravity from Imaging and Spectroscopic Surveys

    Get PDF
    Tests of gravity on large-scales in the universe can be made using both imaging and spectroscopic surveys. The former allow for measurements of weak lensing, galaxy clustering and cross-correlations such as the ISW effect. The latter probe galaxy dynamics through redshift space distortions. We use a set of basic observables, namely lensing power spectra, galaxy-lensing and galaxy-velocity cross-spectra in multiple redshift bins (including their covariances), to estimate the ability of upcoming surveys to test gravity theories. We use a two-parameter description of gravity that allows for the Poisson equation and the ratio of metric potentials to depart from general relativity. We find that the combination of imaging and spectroscopic observables is essential in making robust tests of gravity theories. The range of scales and redshifts best probed by upcoming surveys is discussed. We also compare our parametrization to others used in the literature, in particular the gamma parameter modification of the growth factor.Comment: 18 pages, 10 figures, to be submitte

    Measurement of the Transmission Phase of an Electron in a Quantum Two-Path Interferometer

    Full text link
    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the \textit{true} transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the \textit{true} transmission phase while the smooth phase shift in the AB oscillation itself does not.Comment: 5 pages, 4 figure

    Evaluating the Gapless Color-Flavor Locked Phase

    Full text link
    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We recently argued that the next phase down in density (as a function of decreasing quark chemical potential mu or increasing strange quark mass M_s) is the new ``gapless CFL'' (``gCFL'') phase in which only seven quasiparticles have a gap, while there are gapless quasiparticles described by two dispersion relations at three momenta. There is a continuous quantum phase transition from CFL to gCFL quark matter at M_s^2/mu approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken a linear combination "Q-tilde" of electric and color charges, but it is a Q-tilde-conductor with gapless Q-tilde-charged quasiparticles and a nonzero electron density. In this paper, we evaluate the gapless CFL phase, in several senses. We present the details underlying our earlier work which showed how this phase arises. We display all nine quasiparticle dispersion relations in full detail. Using a general pairing ansatz that only neglects effects that are known to be small, we perform a comparison of the free energies of the gCFL, CFL, 2SC, gapless 2SC, and 2SCus phases. We conclude that as density drops, making the CFL phase less favored, the gCFL phase is the next spatially uniform quark matter phase to occur. A mixed phase made of colored components would have lower free energy if color were a global symmetry, but in QCD such a mixed phase is penalized severely.Comment: 18 pages, RevTeX; Version to appear in Phys Rev D. Minor rewording, references adde
    • …
    corecore