17,961 research outputs found
Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor
Non-thermal origin of nonlinear transport across magnetically induced superconductor-metal-insulator transition
We have studied the effect of perpendicular magnetic fields and temperatures
on the nonlinear electronic transport in amorphous Ta superconducting thin
films. The films exhibit a magnetic field induced metallic behavior intervening
the superconductor-insulator transition in the zero temperature limit. We show
that the nonlinear transport in the superconducting and metallic phase is of
non-thermal origin and accompanies an extraordinarily long voltage response
time.Comment: 5 pages, 4 figure
Oracle Estimation of a Change Point in High-Dimensional Quantile Regression
© 2018, © 2018 The Author(s). Published with license by Taylor & Francis. © 2018, © Sokbae Lee, Yuan Liao, Myung Hwan Seo and Youngki Shin. In this article, we consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations. We develop ℓ1-penalized estimators of both regression coefficients and the threshold parameter. Our penalized estimators not only select covariates but also discriminate between a model with homogenous sparsity and a model with a change point. As a result, it is not necessary to know or pretest whether the change point is present, or where it occurs. Our estimator of the change point achieves an oracle property in the sense that its asymptotic distribution is the same as if the unknown active sets of regression coefficients were known. Importantly, we establish this oracle property without a perfect covariate selection, thereby avoiding the need for the minimum level condition on the signals of active covariates. Dealing with high-dimensional quantile regression with an unknown change point calls for a new proof technique since the quantile loss function is nonsmooth and furthermore the corresponding objective function is nonconvex with respect to the change point. The technique developed in this article is applicable to a general M-estimation framework with a change point, which may be of independent interest. The proposed methods are then illustrated via Monte Carlo experiments and an application to tipping in the dynamics of racial segregation. Supplementary materials for this article are available online
Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films
High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low
oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane
asymmetric atomic arrangements at the substrate surface allowed us to grow
epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with
quite different a- and b-axes lattice constants. The YTiO3 film exhibited a
clear ferromagnetic transition at 30 K with a saturation magnetization of about
0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of
the substrate, which differs from the single crystal easy axis direction, i.e.,
[001].Comment: 14 pages, 4 figure
The Dropping of In-Medium Hadron Mass in Holographic QCD
We study the baryon density dependence of the vector meson spectrum using the
D4/D6 system together with the compact D4 baryon vertex. We find that the
vector meson mass decreases almost linearly in density at low density for small
quark mass, but saturates to a finite non-zero value for large density. We also
compute the density dependence of the mass and the
velocity. We find that in medium, our model is consistent with the GMOR
relation up to a few times the normal nuclear density. We compare our hQCD
predictions with predictions made based on hidden local gauge theory that is
constructed to model QCD.Comment: 20 pages, 7 figure
Optical conductivity in the CuO double chains of PrBa_2Cu_4O_8: Consequences of charge fluctuation
We calculate the optical conductivity of the CuO double chains of
PrBaCuO by the mean-field approximation for the coupled two-chain
Hubbard model around quarter filling. We show that the 40 meV peak
structure, spectral shape, and small Drude weight observed in experiment are
reproduced well by the present calculation provided that the stripe-type charge
ordering presents. We argue that the observed anomalous optical response may be
due to the presence of stripe-type fluctuations of charge carriers in the CuO
double chains; the fast time scale of the optical measurement should enable one
to detect slowly fluctuating order parameters as virtually a long-range order.Comment: 7 pages, 5 eps figure
- …