CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Oracle Estimation of a Change Point in High-Dimensional Quantile Regression
Authors
S Lee
Y Liao
MH Seo
Y Shin
Publication date
8 June 2018
Publisher
'Informa UK Limited'
Doi
Abstract
© 2018, © 2018 The Author(s). Published with license by Taylor & Francis. © 2018, © Sokbae Lee, Yuan Liao, Myung Hwan Seo and Youngki Shin. In this article, we consider a high-dimensional quantile regression model where the sparsity structure may differ between two sub-populations. We develop ℓ1-penalized estimators of both regression coefficients and the threshold parameter. Our penalized estimators not only select covariates but also discriminate between a model with homogenous sparsity and a model with a change point. As a result, it is not necessary to know or pretest whether the change point is present, or where it occurs. Our estimator of the change point achieves an oracle property in the sense that its asymptotic distribution is the same as if the unknown active sets of regression coefficients were known. Importantly, we establish this oracle property without a perfect covariate selection, thereby avoiding the need for the minimum level condition on the signals of active covariates. Dealing with high-dimensional quantile regression with an unknown change point calls for a new proof technique since the quantile loss function is nonsmooth and furthermore the corresponding objective function is nonconvex with respect to the change point. The technique developed in this article is applicable to a general M-estimation framework with a change point, which may be of independent interest. The proposed methods are then illustrated via Monte Carlo experiments and an application to tipping in the dynamics of racial segregation. Supplementary materials for this article are available online
Similar works
Full text
Available Versions
SNU Open Repository and Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:s-space.snu.ac.kr:10371/20...
Last time updated on 09/09/2024
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1080%2F01621459.20...
Last time updated on 02/01/2020
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019