17,571 research outputs found
Sialons as high temperature insulators
Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range
Microscopic Restoration of Proton-Neutron Mixed Symmetry in Weakly Collective Nuclei
Starting from the microscopic low-momentum nucleon-nucleon interaction V{low
k}, we present the first systematic shell model study of magnetic moments and
magnetic dipole transition strengths of the basic low-energy one-quadrupole
phonon excitations in nearly-spherical nuclei. Studying in particular the
even-even N=52 isotones from 92Zr to 100Cd, we find the predicted evolution of
the predominantly proton-neutron non-symmetric state reveals a restoration of
collective proton-neutron mixed-symmetry structure near mid-shell. This
provides the first explanation for the existence of pronounced collective
mixed-symmetry structures in weakly-collective nuclei.Comment: 5 Pages, 3 figure
Detection of hidden mineral deposits by airborne spectral analysis of forest canopies
Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys
Low-momentum ring diagrams of neutron matter at and near the unitary limit
We study neutron matter at and near the unitary limit using a low-momentum
ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential,
neutron-neutron potentials with various scattering lengths such as
and are constructed. Such potentials are renormalized
with rigorous procedures to give the corresponding -equivalent
low-momentum potentials , with which the low-momentum
particle-particle hole-hole ring diagrams are summed up to all orders, giving
the ground state energy of neutron matter for various scattering lengths.
At the limit of , our calculated ratio of to that of
the non-interacting case is found remarkably close to a constant of 0.44 over a
wide range of Fermi-momenta. This result reveals an universality that is well
consistent with the recent experimental and Monte-Carlo computational study on
low-density cold Fermi gas at the unitary limit. The overall behavior of this
ratio obtained with various scattering lengths is presented and discussed.
Ring-diagram results obtained with and those with -matrix
interactions are compared.Comment: 9 pages, 7 figure
Shell model description of the 14C dating beta decay with Brown-Rho-scaled NN interactions
We present shell model calculations for the beta-decay of the 14C ground
state to the 14N ground state, treating the states of the A=14 multiplet as two
0p holes in an 16O core. We employ low-momentum nucleon-nucleon (NN)
interactions derived from the realistic Bonn-B potential and find that the
Gamow-Teller matrix element is too large to describe the known lifetime. By
using a modified version of this potential that incorporates the effects of
Brown-Rho scaling medium modifications, we find that the GT matrix element
vanishes for a nuclear density around 85% that of nuclear matter. We find that
the splitting between the (J,T)=(1+,0) and (J,T)=(0+,1) states in 14N is
improved using the medium-modified Bonn-B potential and that the transition
strengths from excited states of 14C to the 14N ground state are compatible
with recent experiments.Comment: 4 pages, 5 figures Updated to include referee comments/suggestion
Suppression of core polarization in halo nuclei
We present a microscopic study of halo nuclei, starting from the Paris and
Bonn potentials and employing a two-frequency shell model approach. It is found
that the core-polarization effect is dramatically suppressed in such nuclei.
Consequently the effective interaction for halo nucleons is almost entirely
given by the bare G-matrix alone, which presently can be evaluated with a high
degree of accuracy. The experimental pairing energies between the two halo
neutrons in He and Li nuclei are satisfactorily reproduced by our
calculation. It is suggested that the fundamental nucleon-nucleon interaction
can be probed in a clearer and more direct way in halo nuclei than in ordinary
nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches
version to appear in Phys. Rev. Letter
Low momentum nucleon-nucleon potential and shell model effective interactions
A low momentum nucleon-nucleon (NN) potential V-low-k is derived from meson
exhange potentials by integrating out the model dependent high momentum modes
of V_NN. The smooth and approximately unique V-low-k is used as input for shell
model calculations instead of the usual Brueckner G matrix. Such an approach
eliminates the nuclear mass dependence of the input interaction one finds in
the G matrix approach, allowing the same input interaction to be used in
different nuclear regions. Shell model calculations of 18O, 134Te and 135I
using the same input V-low-k have been performed. For cut-off momentum Lambda
in the vicinity of 2 fm-1, our calculated low-lying spectra for these nuclei
are in good agreement with experiments, and are weakly dependent on Lambda.Comment: 5 pages, 5 figure
- …