8,582 research outputs found

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D−4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Anisotropic higher derivative gravity and inflationary universe

    Get PDF
    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.Comment: 9 page

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0∂ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte

    Kaluza-Klein Higher Derivative Induced Gravity

    Get PDF
    The existence and stability analysis of an inflationary solution in a D+4D+4-dimensional anisotropic induced gravity is presented in this paper. Nontrivial conditions in the field equations are shown to be compatible with a cosmological model in which the 4-dimension external space evolves inflationary, while, the D-dimension internal one is static. In particular, only two additional constraints on the coupling constants are derived from the abundant field equations and perturbation equations. In addition, a compact formula for the non-redundant 4+D dimensional Friedmann equation is also derived for convenience. Possible implications are also discussed in this paper.Comment: 13 pages, typos/errors corrected, three additional appendices adde

    Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)

    Get PDF
    Epitaxial FeRh(100) films (CsCl structure, ∌10 ML \sim 10\ ML\ thick), prepared {\it in-situ} on a W(100) single crystal substrate, have been investigated via valence band and core level photoemission. The presence of the temperature-induced, first-order, antiferromagnetic to ferromagnetic (AF→\rightarrow FM) transition in these films has been verified via linear dichroism in photoemission from the Fe 3pp levels. Core level spectra indicate a large moment on the Fe atom, practically unchanged in the FM and AF phases. Judging from the valence band spectra, the metamagnetic transition takes place without substantial modification of the electronic structure. In the FM phase, the spin-resolved spectra compare satisfactorily to the calculated spin-polarized bulk band structure.Comment: 7 pages, 5 figure

    Lepton Flavor Violation and Cosmological Constraints on R-parity Violation

    Full text link
    In supersymmetric standard models R-parity violating couplings are severely constrained, since otherwise they would erase the existing baryon asymmetry before the electroweak transition. It is often claimed that this cosmological constraint can be circumvented if the baryon number and one of the lepton flavor numbers are sufficiently conserved in these R-parity violating couplings, because B/3-L_i for each lepton flavor is separately conserved by the sphaleron process. We discuss the effect of lepton flavor violation on the B-L conservation, and show that even tiny slepton mixing angles \theta_{12} \gsim {\cal O}(10^{-4}) and \theta_{23}, \theta_{13}\gsim {\cal O}(10^{-5}) will spoil the separate B/3-L_i conservation. In particular, if lepton flavor violations are observed in experiments such as MEG and B-factories, it will imply that all the R-parity violating couplings must be suppressed to avoid the B-L erasure. We also discuss the implication for the decay of the lightest MSSM particle at the LHC.Comment: 21 pages, 7 figures. v2: minor change

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Improving 3D U-Net for Brain Tumor Segmentation by Utilizing Lesion Prior

    Full text link
    We propose a novel, simple and effective method to integrate lesion prior and a 3D U-Net for improving brain tumor segmentation. First, we utilize the ground-truth brain tumor lesions from a group of patients to generate the heatmaps of different types of lesions. These heatmaps are used to create the volume-of-interest (VOI) map which contains prior information about brain tumor lesions. The VOI map is then integrated with the multimodal MR images and input to a 3D U-Net for segmentation. The proposed method is evaluated on a public benchmark dataset, and the experimental results show that the proposed feature fusion method achieves an improvement over the baseline methods. In addition, our proposed method also achieves a competitive performance compared to state-of-the-art methods.Comment: 5 pages, 4 figures, 1 table, LNCS forma
    • 

    corecore