15,719 research outputs found

    A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging

    Full text link
    Polarized protons have never been accelerated to more than about 2525GeV. To achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed. In this publication we will stress an important aspect of very high energy polarized proton beams, namely the fact that the equilibrium polarization direction can vary substantially across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such a divergence of the polarization direction would not only diminish the average polarization available to the particle physics experiment, but it would also make the polarization involved in each collision analyzed in a detector strongly dependent on the phase space position of the interacting particle. In order to analyze and compensate this effect, methods for computing the equilibrium polarization direction are needed. In this paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient way. Since only tracking data is needed, our method can be implemented easily in existing spin tracking programs. Several examples demonstrate the importance of the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page

    Achieving diffraction-limited performance on the Berkeley MET5

    Get PDF
    The Berkeley MET5, funded by EUREKA, is a 0.5-NA EUV projection lithography tool located at the Advanced Light Source at Berkeley National Lab. Wavefront measurements of the MET5 optic have been performed using a custom in-situ lateral shearing interferometer suitable for high-NA interferometry. In this paper, we report on the most recent characterization of the MET5 optic demonstrating an RMS wavefront 0.31 nm, and discuss the specialized mask patterns, gratings, and illumination geometries that were employed to accommodate the many challenges associated with high-NA EUV interferometry

    Three-Dimensional Analysis of Wakefields Generated by Flat Electron Beams in Planar Dielectric-Loaded Structures

    Full text link
    An electron bunch passing through dielectric-lined waveguide generates Cˇ\check{C}erenkov radiation that can result in high-peak axial electric field suitable for acceleration of a subsequent bunch. Axial field beyond Gigavolt-per-meter are attainable in structures with sub-mm sizes depending on the achievement of suitable electron bunch parameters. A promising configuration consists of using planar dielectric structure driven by flat electron bunches. In this paper we present a three-dimensional analysis of wakefields produced by flat beams in planar dielectric structures thereby extending the work of Reference [A. Tremaine, J. Rosenzweig, and P. Schoessow, Phys. Rev. E 56, No. 6, 7204 (1997)] on the topic. We especially provide closed-form expressions for the normal frequencies and field amplitudes of the excited modes and benchmark these analytical results with finite-difference time-domain particle-in-cell numerical simulations. Finally, we implement a semi-analytical algorithm into a popular particle tracking program thereby enabling start-to-end high-fidelity modeling of linear accelerators based on dielectric-lined planar waveguides.Comment: 12 pages, 2 tables, 10 figure
    • …
    corecore