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A special arrangement of quadrupole and horizontally-bending-dipole magnets is being considered in order
to cancel the depolarization effect of the quadrupoles to the first order. Also discussed is an alternative
arrangement using combined-function magnets that contain both quadrupole and dipole fields in the same space.
These quadrupole—dipole arrangements do not necessarily increase the needed integrated bending strength (in
tesla-meter) of an accelerator. If this technique were to be used, two Siberian Snakes would be sufficient to
maintain the beam polarization during acceleration at the SSC.

1. INTRODUCTION

It is well known that the main cause of beam depolarization during acceleration in large
synchrotrons comes from spin perturbations at the quadrupoles. At energies above 1
TeV, one or two Siberian Snakes might not be sufficient to maintain polarization. Near
intrinsic resonances, !» 2 the quadrupoles can reverse the polarization of a particle in
a time less than the particle-revolution period. Although complete spin reversal of all
particles in a beam does not cause depolarization, the situation is complicated by the
presence of machine imperfection resonances that are close enough to overlap with the
intrinsic ones. In order to answer the question of polarization stability one must inves-
tigate, theoretically and experimentally, the spin dynamics in the regions of overlapping
resonances. Analytical and computer calculations have been made, 3 and an experimental
itudy of simulated overlapping resonances at the IUCF Cooler Ring has been proposed.

These difficulties foreseen in keeping polarization at very high energies call for the
invention of special methods to decrease the effects of intrinsic resonances. This is the-
oretically possible because of the known origin, structure, and strength of these intrinsic
resonances.
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A few alternatives are suggested to achieve this objective. One possibility is to
introduce a large number (2/N) of Siberian Snakes in order to destroy the correlation
between spin precession around the vertical field in the dipole magnets and particle
oscillation in the quadrupole’s field. As a result, the strength of the intrinsic resonances
decreases by a factor of NV, 3 © and it could in principle be reduced to zero by a special
distribution of the Snakes in the ring. 7 A second method is to destroy this correlation
with a relatively small modulation of the dipole field. One would decrease the strength of
intrinsic resonances by a factor v/M for M modulation periods per revolution. Another
method could be provided by a special choice of the lattice design6’ 7,8 without using a
large number of Snakes.

In this paper we consider methods of cancelling the quadrupole’s effect on polarization,
which do not depend on the structure of the lattice of the accelerator, and are applicable
for both the intrinsic and the imperfection resonances. Two methods will be described.
The first method involves splitting the quadrupoles into two equal pieces and inserting
a dipole magnet between them. The second method involves using combined-function
magnets.

2. SPLITTING THE QUADRUPOLES

Ideally, the equilibrium beam polarization in a storage ring with pairs of Siberian Snakes
is in the vertical direction in regions outside the Snakes. Quadrupoles in these regions
perturb the spins of particles which traverse the quadrupoles off-center vertically owing
to either a closed-orbit error or their betatron oscillations. This perturbation due to
quadrupoles is typically the main reason for beam depolarization in such accelerators. It
is suggested below that, by a reconfiguration of these quadrupoles, their depolarization
effects can be suppressed.

2.1. Short quadrupole approximation

Consider a particle moving through a quadrupole at an energy for which Gy > 1,
where G = g¢/2 — 1 is the anomalous gyromagnetic ratio (G = 1.79 for protons)
and + is the relativistic factor. The perturbation on the vertical polarization Sy is due to
spin precession around the horizontal axis. The precession angle is

Ge [
Al = — B, dz 1
= | B M
where e and M are the particle’s charge and mass; c is the speed of light; B, is the
horizontal field of the quadrupole; ¢, is the length of the quadrupole. We neglect the
longitudinal field B, everywhere and we assume that the precession angles in a single
quadrupole are small. In linear approximation:

OB,
B, = .

Jy y

OB,
B, = 3y T

where y and z are the vertical and horizontal components of the particle’s displacement
from the quadrupole axis (both the betatron and the closed orbit contributions) and B,
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is the vertical component of quadrupole’s field. The spin precession angle due to the
quadrupole is equal to

Ge 0B, /‘q
A= —— — y(z)dz (2)
Me oy J,
where y(z) satisfies the equation
y'+ny=0
with
ne _ e 0B
 yMc? By

In high energy accelerators the length of a single quadrupole is small compared with
the distance between the quadrupoles and we can neglect the change of the vertical
displacement y inside the quadrupole:

Af = vGnlyy (3)
To first order in A6, the change in vertical polarization is given by
AS, = Sycos A0+ S,sin A — S, =~ S,A0

Particles move from one quadrupole to another through the dipoles which rotate the
polarization (S;, S,) in the orbital plane. Near the depolarization resonances the value

> As,
q

increases at each revolution, leading to the depolarization of the beam.

We can cancel the effect (3) in a simple and efficient way. We split the quadrupole
in the middle and insert between the two pieces a dipole magnet with a vertical field
that rotates the spin by 180°. Consequently, the spin component S, will be equal and
opposite in these two pieces of the quadrupole. This results in

¢ ¢
AS, = vGny <—qu — —qu) =0
2 2
More precisely, if we take into account that 3’ # 0, we obtain
1
ASy = Z'yGanSzy' (lg +2¢,) (4)

where £, is the dipole length, and we have assumed here that y’ does not change much
in the region and that S, does not change much across the quadrupoles. The comparison
with Eq. (3) shows that such a method allows us to suppress the depolarization resonance
strength due to quadrupoles by a factor

kN.—ﬂ_

Tl 2, )

where f3, is the B-function in the quadrupole. This factor is about 60 for the SSC on the
average, although it varies because of the variation of 3, in different quadrupoles.
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2.2. Orbit matching in the horizontal plane

The inserted dipole will also change the particle velocity by an angle /G, which
depends on the particle’s energy. We must then add two compensating dipoles at both
ends of the quadrupole in order to exclude any closed-orbit distortions outside the region.
Each of the compensating dipoles is half the length of the inserted dipole. The maximum
orbit distortion in the middle of this arrangement is

™

AZ)max X
( x) 47ian

(6r +£4) (6)

where ip;j is the «y-factor at injection. The value £, can be found from the condition

Ge
Mt b =T
If we assume B, = 5.4 T, then £, = 1 m. In the SSC case we have

(AZ)max ~ 0.1cm in the Main Ring (4, =5m, 7 =2x 10%)
a7 10.35 cm  in the High-Energy Booster (¢, = 1.5 m, 7~in; = 200)

Note that it may be desirable, in practice, for the string of dipoles to be used for normal
bending so that the maximum needed integrated bending strength remains the same as
the nominal design. This can be accomplished by changing the compensating field to

(approximately):
B.=B, (2 T 1)
Ymax

so, at the highest energy (Y = 7ymax) all the dipoles work, as usual, with the normal
bending magnets.

2.3. Betatron Tune Shift

We also have to estimate the vertical betatron tune shift Av, due to the horizontal orbit
distortions in the field By (z) of the inserted dipole, particularly at energies ¥ < Ymax-
Neglecting the change of the [-function in the quadrupole section, we have 10

1] e 2
_ Py 2
Avy = 4 (7M02> /By dz

In the case where the quadrupoles are split into two pieces, we have

TN, @_ﬂ
2(vG)? ¢,

(Avy)tor =

where Ny is the total number of quadrupoles (in the original nominal design) and By is
the average value of 3, in the quadrupoles. At injection energies the values of (Avy)iot
will be approximately 0.01 for the SSC Main Ring and 0.3 for the SSC High Energy
Booster, respectively. Such tune shifts will require compensation. However, values are
small relative to the v-values 123 and 33, and therefore it should be possible to provide
constant values of the betatron tune during acceleration.
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2.4. Precise cancellation of the quadrupole effect on the spin (Linear Theory)

If it is desirable to cancel the residual quadrupole effect (4), we will need an additional
degree of freedom to operate in integral (2). In order to do this we can split the quadrupole
into three pieces (of lengths ¢;, ¢35, and #;) and insert between them two horizontal 7-
rotators and add two dipoles at each end of the arrangement.

We assume the lattice to be geometrically symmetric with respect to the middle of
the central quadrupole piece (z = 0). The compensation condition of spin perturbation

is as follows:
—z1+41 £2/2 21
/ y(2) dz —/ y(z) dz +/ y(z) dz=0 (7)

2] —52/2 2:1-—21

where y(z) is the general solution of the equation
y"(2) + n(2)y(z) =0

between the beginning of the left quadrupole piece and end of the right piece (n = 0
between the quadrupole pieces where the spin is rotating around uniform vertical field).
With the symmetry referred to above, we can choose the general solution y(z) as an
arbitrary linear combination of the symmetric solution y,(z) and the antisymmetric one

Ya(2):

Ys(2) = ys(—2); Ya(2) = —Ya(—2)
Then the condition (7) is satisfied automatically for y,(z) and we only need
l2/2 2144
| @ = [ e 6 ®)
0 21

It is obvious that this requirement could always be satisfied by a suitable ratio between
¢, and /5; the distances between the quadrupole pieces being fixed by the spin 7-rotators.
Considering the question concerning the compensation of the orbit distortion, we have
to note that rotators can have either the same or opposite signs. The last case is preferable
if one has strong limitations on orbit distortions inside the quadrupole, although this
technique does not allow one to use these inserted dipole magnets for normal bending.

3. USING COMBINED-FUNCTION MAGNETS

Now let us consider the spin motion through a combined-function magnet with a ver-
tical dipole field By, and a quadrupole gradient 0B, /0y. The change of the vertical
polarization Sy in a quadrupole is

AS, = -

e . £q/2
Ge 9B / z) S,(z) dz 9)

Mc? oy —2,/2 Y
and the evolution of S,(z) to lowest order is described by the formula:
S.(2) = 8,(0)cosyp + S,(0)siny
= —— B,z=
P = Byz Qz
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where S; is the horizontal spin component and B, is the uniform dipole field of the
combined-function magnet.

We first assume that the magnet is short enough to neglect the effect of quadrupole
field on the particle trajectory across the magnet, i.e.

0B,

By Ay k1

fyM YMc?

Such a situation is typical for high-energy accelerators. Particle motion in the region is
then approximated as if in free space. Equation (9) then gives

Slnﬂ
y(0) -sin Y1 5.(0) ~ 4/(0) - 5.(0) (% cos %1 - T)}

2 0B,

ASy = — B ¥

where g = Q.
The orders of magnitude of y’(0) and y(0) are related as follows:

y'(0) ~ y(0)/5,

where f3, is the 3-function inside a quadrupole. Assuming 3, > {, the value |AS,| is
close to a minimum when 1, = 2, i.e.

By -{g= 2%% (10)

then 1 9B
A ~ —— z . . .
Sy =g gy VOt 50

Compared with Eq. (3), i.e. the case when no dipole field was imposed to make the
quadrupole magnet a combined-function one, the depolarization resonance strength has
been suppressed by a factor

27 By

2
If it is desirable to completely cancel the integral (9), one could switch the sign of the

dipole field at the middle of the magnet. In the approximation y’ = const, the integral
(9) vanishes if

k=

B, ¢, ~47r5% 11)

For long quadrupoles with y’ +# constant, cancellation of the integral (9) could be
achieved by some small variation of | By (z)|, symmetrically relative to the middle of the
magnet. In this scenario, dipoles will have to be added at the ends of the combined-
function magnet in order to remove the closed-orbit effect outside the system.

Another possibility that matches the closed orbit automatically is to change the
combined-function dipole field in such a way that the first 1/4 and the last 1/4 of the
magnet have their field opposite in sign to the middle 1/2 of the magnet, and the field
strength is given by
Mc?

eG

B, |, ~ 8 (12)
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Still another possibility would be to split the combined-function magnet and insert a
dipole w-rotator between the pieces.

For the scenario described by Eq. (10) or (11), as mentioned, it would be necessary to
add compensating dipoles to the ends of the combined-function region in order to avoid
orbit distortions outside the region. An alternative is to have the arrangement described
above in Eq. (12), in which case the orbit distortion is automatically compensated. In
the case described by Eq. (10), still another, more complicated but profitable, method of
matching is to use the couple of dipoles as part of the bending magnets. The compensating
dipole field B.(7) is determined as a function of - from the condition that the design
beam trajectory is bent by a fixed angle 6;4:

2w 42 el. Bmax _ 2m 5 el. B.(y)
YmaxG Mc? Apax G Mc?2  ~

Oor =

where £, is the length of the compensating dipoles, and Yy.x and Bp,,x are the maximum
values of v and B, (at the peak energy). Note that B.(-y) can change its sign at ¥ < Ymax-
The maximum orbit distortion inside the combined-function magnet is

194

— 13
4G’Yinj ( )

(Az)max ~
where £ is the total length of the system and +;y; is the ~y-factor for the injection energy.
Equation (13) gives a similar result to the split quadrupole scheme, Eq. (6). In the case
of reversing dipoles, the value of (Az)max Would be less, but such a dipole string cannot
serve for normal bending of the circumference.

Note that the quadrupole’s contribution to the spin phase 4, due to the orbit distortion,
is small and does not change with energy during acceleration. In fact, it is reduced to a
small renormalization of the dipole field B,. A similar situation occurs for the case of
Eq. (10).

We may compare the features of the combined-function magnet method and the split-
quadrupole method as follows:

1. The total length of the magnet strings and the maximum orbit distortion are the
same for both methods.

2. The combined-function method is schematically simpler and offers an advantage
in space usage, at the cost of a more complex magnet design.

4. CONCLUSION

Our results indicate that it is possible to cancel the quadrupole influence on vertical
polarization by the intrinsic and imperfection depolarization resonances. With the use
of such a technique, keeping the beam polarized during acceleration is reduced, mainly,
to the limitation on random dipole angular misalignment « and vertical displacement of
quadrupole pieces Az, using two Siberian Snakes: 9

a < 1/v/Gvmax

Azg € R Iw?/fq/uzG'ymax
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Here R and v are the machine radius and betatron tune. This technique could allow
the possibility of polarized beams for energies as high as 105-10° GeV. Theoretically,
additional requirements to the beam emittance can be formulated taking into consideration
the higher order effects of the quadrupoles on the spin. Here we only note that the
cancellation considered above substantially reduces these effects simultaneously.

To summarize, we briefly discuss the advantages and disadvantages of the quadrupole—

dipole coupling methods:

1. From the physical point of view, these methods seem to be the most efficient
way to suppress the effects of the beam emittance and machine imperfections on
spin. Two Siberian Snakes would then be sufficient to overcome all dangerous
spin resonances in a machine such as the SSC.

2. Matching the dipoles considered above does not necessarily lead to increased in-

tegrated magnetic strength around the circumference because these dipoles can be
used to serve the normal bending function. The total length of these compensating
dipoles would be small compared with the total length of normal dipoles in a lat-
tice. One disadvantage of these methods is the need for some special care of orbit
corrections at injection in view of the relatively high value of the dipole field.

3. A final consideration would be the technical design and the cost of the considered

magnet systems. Accordingly, these methods should be justified critically as com-
pared with the options where large numbers of Siberian Snakes are used in order
to suppress the strength of the depolarization resonances.
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