42,226 research outputs found

    Spherical squeeze-film hybrid bearing with small steady-state radial displacement

    Get PDF
    Spherical squeeze-film hybrid bearing with small steady-state radial displacement analysi

    The solution of special squeeze film gas bearing problems by an improved numerical technique

    Get PDF
    Computer program for solving squeeze film gas bearing problem

    Reactively sputtered RuO2 diffusion barriers

    Get PDF
    The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C

    Valence bond solid order near impurities in two-dimensional quantum antiferromagnets

    Full text link
    Recent scanning tunnelling microscopy (STM) experiments on underdoped cuprates have displayed modulations in the local electronic density of states which are centered on a Cu-O-Cu bond (Kohsaka et. al., cond-mat/0703309). As a paradigm of the pinning of such bond-centered ordering in strongly correlated systems, we present the theory of valence bond solid (VBS) correlations near a single impurity in a square lattice antiferromagnet. The antiferromagnet is assumed to be in the vicinity of a quantum transition from a magnetically ordered Neel state to a spin-gap state with long-range VBS order. We identify two distinct classes of impurities: i) local modulation in the exchange constants, and ii) a missing or additional spin, for which the impurity perturbation is represented by an uncompensated Berry phase. The `boundary' critical theory for these classes is developed: in the second class we find a `VBS pinwheel' around the impurity, accompanied by a suppression in the VBS susceptibility. Implications for numerical studies of quantum antiferromagnets and for STM experiments on the cuprates are noted.Comment: 41 pages, 6 figures; (v2) Minor changes in terminology, added reference

    Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Get PDF
    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon

    Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the Bi2_2Se3_3 Topological Insulator

    Full text link
    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses back-scattering and protects the coherence of these states in the presence of non-magnetic scatterers. In contrast, magnetic scatterers should open the back- scattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon adsorption of various magnetic and non-magnetic impurities on the surface of Bi2_2Se3_3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both non-magnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure

    Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta

    Full text link
    We report a coherence-length scale phenomenon related to how the high-Tc order parameter (OP) evolves under a directly-applied supercurrent. Scanning tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta thin-film strips at 4.2K. At current levels well below the theoretical depairing limit, the low-energy Andreev states are suppressed by the supercurrent, while the gap-like structures remain unchanged. We rule out the likelihood of various extrinsic effects, and propose instead a model based on phase fluctuations in the d-wave BTK formalism to explain the suppression. Our results suggest that a supercurrent could weaken the local phase coherence while preserving the pairing amplitude. Other possible scenarios which may cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review

    WxN1–x alloys as diffusion barriers between Al and Si

    Get PDF
    Reactively sputtered tungsten nitride (WxN1–x) layers are investigated as diffusion barriers between Al overlayers and Si shallow n + -p junctions. Both amorphous W80 N20 and polycrystalline W60 N40 films were found to be very effective in preserving the integrity of the n + -p diodes for 30-min vacuum annealing up to 575 °C. Diode failure at higher temperatures is caused by localized penetration of Al into through the WxN1–x barriers. The effectiveness of the barrier decreases for polycrystalline W90 N10 and is worse for pure W

    Transfer Learning for Content-Based Recommender Systems using Tree Matching

    Full text link
    In this paper we present a new approach to content-based transfer learning for solving the data sparsity problem in cases when the users' preferences in the target domain are either scarce or unavailable, but the necessary information on the preferences exists in another domain. We show that training a system to use such information across domains can produce better performance. Specifically, we represent users' behavior patterns based on topological graph structures. Each behavior pattern represents the behavior of a set of users, when the users' behavior is defined as the items they rated and the items' rating values. In the next step we find a correlation between behavior patterns in the source domain and behavior patterns in the target domain. This mapping is considered a bridge between the two domains. Based on the correlation and content-attributes of the items, we train a machine learning model to predict users' ratings in the target domain. When we compare our approach to the popularity approach and KNN-cross-domain on a real world dataset, the results show that on an average of 83% of the cases our approach outperforms both methods

    Measurement of an Exceptionally Weak Electron-Phonon Coupling on the Surface of the Topological Insulator Bi2_2Se3_3 Using Angle-Resolved Photoemission Spectroscopy

    Full text link
    Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should have to remain coherent at ambient temperatures. Here, we studied temperature dependence of the electronic structure and the scattering rates on the surface of a model topological insulator, Bi2_2Se3_3, by high resolution angle-resolved photoemission spectroscopy. We found an extremely weak broadening of the topological surface state with temperature and no anomalies in the state's dispersion, indicating exceptionally weak electron-phonon coupling. Our results demonstrate that the topological surface state is protected not only from elastic scattering on impurities, but also from scattering on low-energy phonons, suggesting that topological insulators could serve as a basis for room temperature electronic devices.Comment: published version, 5 pages, 4 figure
    • …
    corecore