65,473 research outputs found

    Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m

    Full text link
    Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m wavelengths, despite significant application-driven demand for compact picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and holmium-doped fluoride fiber lasers incorporating a saturable absorber are emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major challenge to extend this coverage. Here, we propose a new approach using dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m (3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral region and the most broadly tunable pulsed fiber laser to date. Numerical simulations show excellent agreement with experiments and also offer new insights into the underlying dynamics of FSF pulse generation. This highlights the remarkable potential of both dysprosium as a gain material and FSF for versatile pulse generation, opening new opportunities for mid-IR laser development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201

    A design assessment of multiwall, metallic stand-off, and RSI reusable thermal protection systems including space shuttle application

    Get PDF
    The design and assessment of reusable surface insulation (RSI), metallic stand off and multiwall thermal protection systems (TPS) is discussed. Multiwall TPS is described in some detail, and analyses useful for design of multiwall are included. Results indicate that multiwall has the potential to satisfy the TPS design goals better than the other systems. The total mass of the stand-off TPS and of the metallic systems require less primary structure mass than the RSI system, since the nonbuckling skin criteria required for RSI may be removed. Continued development of multiwall TPS is required to verify its potential and to provide the necessary data base for design

    Laboratory studies of photodissociation processes relevant to the formation of cometary radicals

    Get PDF
    The strength of the C2(d 3 Pi g yields a 3 Pi u) Swan band emission in the spectra of cometary comae identifies this species as a prominent constituent of the coma gas. It was previously suggested that the formation of cometary C2 proceeds via the secondary photolysis of the C2H radical. The detection of C2H in the interstellar medium and the recent analysis of the radial variation in C2(delta V=O) surface brightness of Comet Halley support the postulate that C2 is a third-generation molecule. Measurement of the C2 and C2H translational energy distributions produced from the multiphoton dissociation (MPD) of acetylene at 193 nm are identified . Time-resolved FTIR emission studies of the nascent C2H radical formed in the C2H2 yields C2H + H reaction verify that this species is produced both vibrationally and electronically excited. A survey of the internal energy distributions of the C2 fragments produced from the MPD of acetylene using a high intensity ArF laser is currently in progress in the laboratory. Recent experiments have focused on the measurement of rotational energy distribution for the C2(A 1 Pi u, a 3 Pi u) fragments. The C2(a 3 Pi u) detection capability is currently being improved by performing this experiment in a molecular beam, thus allowing for discrimination between initial emission and laser-induced fluorescence (LIF). Although the experiments performed to date provide considerable evidence in support of C2H yields C2 + H reaction, there is an important distinction to be made when comparing the laboratory conditions to those typically found in comets. The C2H radicals generated in the laboratory experiments are formed vibrationally and/or electronically excited. Any rotationally/vibrationally excited C2H present in cometary comae will quickly undergo radiative relaxation in the infrared to their lowest rotational and vibrational state. Experiments are currently under way to confirm the cometary formation of C2 via the VUV dissociation of cold C2H

    Ethane steam reforming over a platinum/alumina catalyst: effect of sulphur poisoning

    Get PDF
    In this study we have examined the adsorption of hydrogen sulfide and methanethiol over platinum catalysts and examined the effect of these poisons on the steam reforming of ethane. Adsorption of hydrogen sulfide was measured at 293 and 873 K. At 873 K the adsorbed state of hydrogen sulfide in the presence of hydrogen was SH rather than S, even though the Pt:S ratio was unity. The effect of 11.2 ppm hydrogen sulfide or methanethiol on the steam reforming of ethane was studied at 873 K and 20 barg. Both poisons deactivated the catalyst over a number of hours, but methanethiol was found to be more deleterious, reducing the conversion by almost an order of magnitude, possibly due to the co-deposition of sulfur and carbon. Changes in the selectivity revealed that the effect of sulfur was not uniform on the reactions occurring, with the production of methane reduced proportionally more than the other products, due to the surface sensitivity of the hydrogenolysis and methanation reactions. The water-gas shift reaction was affected to a lesser extent. No regeneration was observed when hydrogen sulfide was removed from the feedstream in agreement with adsorption studies. A slight regeneration was observed when methanethiol was removed from the feed, but this was believed to be due to the removal of carbon rather than sulfur. The overall effect of sulfur poisoning was to reduce activity and enhance hydrogen selectivity

    XMM-Newton, Chandra, and CGPS observations of the Supernova Remnants G85.4+0.7 and G85.9-0.6

    Full text link
    We present an XMM-Newton detection of two low radio surface brightness SNRs, G85.4+0.7 and G85.9-0.6, discovered with the Canadian Galactic Plane Survey (CGPS). High-resolution XMM-Newton images revealing the morphology of the diffuse emission, as well as discrete point sources, are presented and correlated with radio and Chandra images. The new data also permit a spectroscopic analysis of the diffuse emission regions, and a spectroscopic and timing analysis of the point sources. Distances have been determined from HI and CO data to be 3.5 +/- 1.0 kpc for SNR G85.4+0.7 and 4.8 +/- 1.6 kpc for SNR G85.9-0.6. The SNR G85.4+0.7 is found to have a temperature of ~12-13 MK and a 0.5-2.5 keV luminosity of ~1-4 x 10^33 D(3.5)^2 erg/s (where D(3.5) is the distance in units of 3.5 kpc), with an electron density n_e of ~0.07-0.16(fD(3.5))^-1/2 cm^-3 (where f is the volume filling factor), and a shock age of ~9-49(fD(3.5))^1/2 kyr. The SNR G85.9-0.6 is found to have a temperature of ~15-19 MK and a 0.5-2.5 keV luminosity of ~1-4 x 10^34 D(4.8)^2 erg/s (where D(4.8) is the distance in units of 4.8 kpc), with an electron density n_e of ~0.04-0.10(fD(4.8))^-1/2 cm^-3 and a shock age of ~12-42(fD(4.8))^1/2 kyr. Based on the data presented here, none of the point sources appears to be the neutron star associated with either SNR.Comment: 30 pages using emulateapj, 16 figures with quality reduced for astro-ph only. The original version with high-resolution figures can be downloaded from: http://www.physics.umanitoba.ca/~samar/astro-ph/G85s-ms09102007.pdf To appear in ApJ (Jan 20 2008 issue, v673, n1

    Proofing rural lifelong learning

    Get PDF
    • ā€¦
    corecore