48,443 research outputs found

    Simulation of Relativistic Force-free Magnetohydrodynamic Turbulence

    Full text link
    We present numerical studies of 3-dimensional magnetohydrodynamic (MHD) turbulence in a strongly magnetized medium in the extremely relativistic limit, in which the inertia of the charge carriers can be neglected. We have focused on strong Alfvenic turbulence in the limit. We have found the following results. First, the energy spectrum is consistent with a Kolmogorov spectrum: E(k)k5/3E(k)\sim k^{-5/3}. Second, turbulence shows a Goldreich-Sridhar type anisotropy: kk2/3k_{\|} \propto k_{\perp}^{2/3}, where kk_{\|} and kk_{\perp} are wavenumbers along and perpendicular to the local mean magnetic field directions, respectively. These scalings are in agreement with earlier theoretical predictions by Thompson & Blaes.Comment: 4 pages; 3 figures; APJL, submitte

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    Generation of graph-state streams

    Full text link
    We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through an atom-like qubit and those of flying atoms through a cavity-mode photonic qubit. The generated graph states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.Comment: Accepted for publication at PRA Rapid Communication

    Gauge Independent Trace Anomaly for Gravitons

    Full text link
    We show that the trace anomaly for gravitons calculated using the usual effective action formalism depends on the choice of gauge when the background spacetime is not a solution of the classical equation of motion, that is, when off-shell. We then use the gauge independent Vilkovisky-DeWitt effective action to restore gauge independence to the off-shell case. Additionally we explicitly evaluate trace anomalies for some N-sphere background spacetimes.Comment: 19 pages, additional references and title chang

    Charged particle display

    Full text link
    An optical shutter based on charged particles is presented. The output light intensity of the proposed device has an intrinsic dependence on the interparticle spacing between charged particles, which can be controlled by varying voltages applied to the control electrodes. The interparticle spacing between charged particles can be varied continuously and this opens up the possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in Journal of Applied Physics; doi:10.1063/1.317648

    In Situ Nanomechanical Measurements of Interfacial Strength in Membrane-Embedded Chemically Functionalized Si Microwires for Flexible Solar Cells

    Get PDF
    Arrays of vertically aligned Si microwires embedded in polydimethylsiloxane (PDMS) have emerged as a promising candidate for use in solar energy conversion devices. Such structures are lightweight and concurrently demonstrate competitive efficiency and mechanical flexibility. To ensure reliable functioning under bending and flexing, strong interfacial adhesion between the nanowire and the matrix is needed. In situ uniaxial tensile tests of individual, chemically functionalized, Si microwires embedded in a compliant PDMS matrix reveal that chemical functionality on Si microwire surfaces is directly correlated with interfacial adhesion strength. Chemical functionalization can therefore serve as an effective methodology for accessing a wide range of interfacial adhesion between the rigid constituents and the soft polymer matrix; the adhesion can be quantified by measuring the mechanical strength of such systems

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vssηv_s \sim s^{\eta} with η=0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure
    corecore