54,798 research outputs found

    Superalgebra and Conservative Quantities in N=1 Self-dual Supergravity

    Full text link
    The N=1 self-dual supergravity has SL(2,C) and the left-handed and right -handed local supersymmetries. These symmetries result in SU(2) charges as the angular-momentum and the supercharges. The model possesses also the invariance under the general translation transforms and this invariance leads to the energy-momentum. All the definitions are generally covariant . As the SU(2) charges and the energy-momentum we obtained previously constituting the 3-Poincare algebra in the Ashtekar's complex gravity, the SU(2) charges, the supercharges and the energy-momentum here also restore the super-Poincare algebra, and this serves to support the reasonableness of their interpretations.Comment: 18 pages, Latex, no figure

    Throughput Optimization in High Speed Downlink Packet Access (HSDPA)

    Get PDF
    In this paper, we investigate throughput optimization in High Speed Downlink Packet Access (HSDPA). Specifically, we propose offline and online algorithms for adjusting the Channel Quality Indicator (CQI) used by the network to schedule data transmission. In the offline algorithm, a given target BLER is achieved by adjusting CQI based on ACK/NAK history. By sweeping through different target BLERs, we can find the throughput optimal BLER offline. This algorithm could be used not only to optimize throughput but also to enable fair resource allocation among mobile users in HSDPA. In the online algorithm, the CQI offset is adapted using an estimated short term throughput gradient without specifying a target BLER. An adaptive stepsize mechanism is proposed to track temporal variation of the environment. We investigate convergence behavior of both algorithms. Simulation results show that the proposed offline algorithm can achieve the given target BLER with good accuracy. Both algorithms yield up to 30% HSDPA throughput improvement over that with 10% target BLER

    The induced representations of Brauer algebra and the Clebsch-Gordan coefficients of SO(n)

    Get PDF
    Induced representations of Brauer algebra Df(n)D_{f}(n) from Sf1×Sf2S_{f_{1}}\times S_{f_{2}} with f1+f2=ff_{1}+f_{2}=f are discussed. The induction coefficients (IDCs) or the outer-product reduction coefficients (ORCs) of Sf1×Sf2↑Df(n)S_{f_{1}}\times S_{f_{2}}\uparrow D_{f}(n) with f≀4f\leq 4 up to a normalization factor are derived by using the linear equation method. Weyl tableaus for the corresponding Gel'fand basis of SO(n) are defined. The assimilation method for obtaining CG coefficients of SO(n) in the Gel'fand basis for no modification rule involved couplings from IDCs of Brauer algebra are proposed. Some isoscalar factors of SO(n)⊃SO(n−1)SO(n)\supset SO(n-1) for the resulting irrep [λ1, λ2, λ3, λ4,0˙][\lambda_{1},~\lambda_{2},~ \lambda_{3},~\lambda_{4},\dot{0}] with $\sum\limits_{i=1}^{4}\lambda_{i}\leq .Comment: 48 pages latex, submitted to Journal of Phys.

    The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy

    Full text link
    Transport measurements are presented on a class of electrostatically defined lateral dots within a high mobility two dimensional electron gas (2DEG). The new design allows Coulomb Blockade(CB) measurements to be performed on a single lateral dot containing 0, 1 to over 50 electrons. The CB measurements are enhanced by the spin polarized injection from and into 2DEG magnetic edge states. This combines the measurement of charge with the measurement of spin through spin blockade spectroscopy. The results of Coulomb and spin blockade spectroscopy for first 45 electrons enable us to construct the addition spectrum of a lateral device. We also demonstrate that a lateral dot containing a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics

    Get PDF
    This paper develops the theoretical foundations for the ability of a control field to cooperate with noise in the manipulation of quantum dynamics. The noise enters as run-to-run variations in the control amplitudes, phases and frequencies with the observation being an ensemble average over many runs as is commonly done in the laboratory. Weak field perturbation theory is developed to show that noise in the amplitude and frequency components of the control field can enhance the process of population transfer in a multilevel ladder system. The analytical results in this paper support the point that under suitable conditions an optimal field can cooperate with noise to improve the control outcome.Comment: submitted to Phys. Rev.

    Detection of Review Abuse via Semi-Supervised Binary Multi-Target Tensor Decomposition

    Full text link
    Product reviews and ratings on e-commerce websites provide customers with detailed insights about various aspects of the product such as quality, usefulness, etc. Since they influence customers' buying decisions, product reviews have become a fertile ground for abuse by sellers (colluding with reviewers) to promote their own products or to tarnish the reputation of competitor's products. In this paper, our focus is on detecting such abusive entities (both sellers and reviewers) by applying tensor decomposition on the product reviews data. While tensor decomposition is mostly unsupervised, we formulate our problem as a semi-supervised binary multi-target tensor decomposition, to take advantage of currently known abusive entities. We empirically show that our multi-target semi-supervised model achieves higher precision and recall in detecting abusive entities as compared to unsupervised techniques. Finally, we show that our proposed stochastic partial natural gradient inference for our model empirically achieves faster convergence than stochastic gradient and Online-EM with sufficient statistics.Comment: Accepted to the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2019. Contains supplementary material. arXiv admin note: text overlap with arXiv:1804.0383

    AGN feedback in an isolated elliptical galaxy: the effect of strong radiative feedback in the kinetic mode

    Full text link
    Based on two-dimensional high resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central AGN on the cosmological evolution of an isolated elliptical galaxy. Physical processes such as star formation and supernovae are considered. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. In analogy to previous works, we assume that the specific angular momentum of the galaxy is low. It is well-known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating and accretion becomes more chaotic. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being ≃10−3.5\simeq 10^{-3.5}) and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.Comment: 35 pages, 7 figures, accepted by the Ap

    Generally Covariant Conservative Energy-Momentum for Gravitational Anyons

    Get PDF
    We obtain a generally covariant conservation law of energy-momentum for gravitational anyons by the general displacement transform. The energy-momentum currents have also superpotentials and are therefore identically conserved. It is shown that for Deser's solution and Clement's solution, the energy vanishes. The reasonableness of the definition of energy-momentum may be confirmed by the solution for pure Einstein gravity which is a limit of vanishing Chern-Simons coulping of gravitational anyons.Comment: 12 pages, Latex, no figure
    • 

    corecore