8,227 research outputs found

    A transport model of the turbulent scalar-velocity

    Get PDF
    Performance tests of the third-order turbulence closure for predictions of separating and recirculating flows in backward-facing steps were studied. Computations of the momentum and temperature fields in the flow domain being considered entail the solution of time-averaged transport equations containing the second-order turbulent fluctuating products. The triple products, which are responsible for the diffusive transport of the second-order products, attain greater significance in separating and reattaching flows. The computations are compared with several algebraic models and with the experimental data. The prediction was improved considerably, particularly in the separated shear layer. Computations are further made for the temperature-velocity double products and triple products. Finally, several advantages were observed in the usage of the transport equations for the evaluation of the turbulence triple products; one of the most important features is that the transport model can always take the effects of convection and diffusion into account in strong convective shear flows such as reattaching separated layers while conventional algebraic models cannot account for these effects in the evaluation of turbulence variables

    An optical study of interdiffusion in ZnSe/ZnCdSe

    Get PDF
    Copyright 1996 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Applied Physics Letters 69, 1579 (1996) and may be found at

    The activation energy for GaAs/AlGaAs interdiffusion

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at

    Application of bifurcation methods for the prediction of low-speed aircraft ground performance

    Get PDF
    The design of aircraft for ground maneuvers is an essential part in satisfying the demanding requirements of the aircraft operators. Extensive analysis is done to ensure that a new civil aircraft type will adhere to these requirements, for which the nonlinear nature of the problem generally adds to the complexity of such calculations. Small perturbations in velocity, steering angle, or brake application may lead to significant differences in the final turn widths that can be achieved. Here, the U-turn maneuver is analyzed in detail, with a comparison between the two ways in which this maneuver is conducted. A comparison is also made between existing turn-width prediction methods that consist mainly of geometric methods and simulations and a proposed new method that uses dynamical systems theory. Some assumptions are made with regard to the transient behavior, for which it is shown that these assumptions are conservative when an upper bound is chosen for the transient distance. Furthermore, we demonstrate that the results from the dynamical systems analysis are sufficiently close to the results from simulations to be used as a valuable design tool. Overall, dynamical systems methods provide an order-of-magnitude increase in analysis speed and capability for the prediction of turn widths on the ground when compared with simulations. Nomenclature co = oleo damping coefficient, N s2 =m2 cz = tire vertical damping coefficient Fco = damping force in oleo due to the orifice,

    Evaluation of stem rot in 339 Bornean tree species: implications of size, taxonomy, and soil-related variation for aboveground biomass estimates

    Get PDF
    Fungal decay of heart wood creates hollows and areas of reduced wood density within the stems of living trees known as stem rot. Although stem rot is acknowledged as a source of error in forest aboveground biomass (AGB) estimates, there are few data sets available to evaluate the controls over stem rot infection and severity in tropical forests. Using legacy and recent data from 3180 drilled, felled, and cored stems in mixed dipterocarp forests in Sarawak, Malaysian Borneo, we quantified the frequency and severity of stem rot in a total of 339 tree species, and related variation in stem rot with tree size, wood density, taxonomy, and species’ soil association, as well as edaphic conditions. Predicted stem rot frequency for a 50 cm tree was 53% of felled, 39% of drilled, and 28% of cored stems, demonstrating differences among methods in rot detection ability. The percent stem volume infected by rot, or stem rot severity, ranged widely among trees with stem rot infection (0.1–82.8 %) and averaged 9% across all trees felled. Tree taxonomy explained the greatest proportion of variance in both stem rot frequency and severity among the predictors evaluated in our models. Stem rot frequency, but not severity, increased sharply with tree diameter, ranging from 13% in trees 10–30 cm DBH to 54%in stems ≥ 50 cm DBH across all data sets. The frequency of stem rot increased significantly in soils with low pH and cation concentrations in topsoil, and stem rot was more common in tree species associated with dystrophic sandy soils than with nutrient-rich clays. When scaled to forest stands, the maximum percent of stem biomass lost to stem rot varied significantly with soil properties, and we estimate that stem rot reduces total forest AGB estimates by up to 7% relative to what would be predicted assuming all stems are composed strictly of intact wood. This study demonstrates not only that stem rot is likely to be a significant source of error in forest AGB estimation, but also that it strongly covaries with tree size, taxonomy, habitat association, and soil resources, underscoring the need to account for tree community composition and edaphic variation in estimating carbon storage in tropical forests

    The Future is Hera! Analyzing Astronomical Over the Internet

    Get PDF
    Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes

    Inversion Symmetry and Critical Exponents of Dissipating Waves in the Sandpile Model

    Full text link
    Statistics of waves of topplings in the Sandpile model is analysed both analytically and numerically. It is shown that the probability distribution of dissipating waves of topplings that touch the boundary of the system obeys power-law with critical exponent 5/8. This exponent is not indeendent and is related to the well-known exponent of the probability distribution of last waves of topplings by exact inversion symmetry s -> 1/s.Comment: 5 REVTeX pages, 6 figure

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    Topological superfluid of spinless Fermi gases in p-band honeycomb optical lattices with on-site rotation

    Full text link
    In this paper, we put forward to another route realizing topological superfluid (TS). In contrast to conventional method, spin-orbit coupling and external magnetic field are not requisite. Introducing an experimentally feasible technique called on-site rotation (OSR) into p-band honeycomb optical lattices for spinless Fermi gases and considering CDW and pairing on the same footing, we investigate the effects of OSR on superfluidity. The results suggest that when OSR is beyond a critical value, where CDW vanishes, the system transits from a normal superfluid (NS) with zero TKNN number to TS labeled by a non-zero TKNN number. In addition, phase transitions between different TS are also possible
    • …
    corecore