11,894 research outputs found
FRuDA: Framework for Distributed Adversarial Domain Adaptation
Breakthroughs in unsupervised domain adaptation (uDA) can help in adapting models from a label-rich source domain to unlabeled target domains. Despite these advancements, there is a lack of research on how uDA algorithms, particularly those based on adversarial learning, can work in distributed settings. In real-world applications, target domains are often distributed across thousands of devices, and existing adversarial uDA algorithms -- which are centralized in nature -- cannot be applied in these settings. To solve this important problem, we introduce FruDA: an end-to-end framework for distributed adversarial uDA. Through a careful analysis of the uDA literature, we identify the design goals for a distributed uDA system and propose two novel algorithms to increase adaptation accuracy and training efficiency of adversarial uDA in distributed settings. Our evaluation of FruDA with five image and speech datasets shows that it can boost target domain accuracy by up to 50% and improve the training efficiency of adversarial uDA by at least 11 times
Phase sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system
We theoretically study the problem of detecting dipole radiation in an
optical system of high numerical aperture in which the detector is sensitive to
\textit{field amplitude}. In particular, we model the phase sensitive detector
as a single-mode cylindrical optical fiber. We find that the maximum in
collection efficiency of the dipole radiation does not coincide with the
optimum resolution for the light gathering instrument. The calculated results
are important for analyzing fiber-based confocal microscope performance in
fluorescence and spectroscopic studies of single molecules and/or quantum dots.Comment: 12 pages, 2 figure
Magnetic and superconducting instabilities in the periodic Anderson model: an RPA stud
We study the magnetic and superconducting instabilities of the periodic
Anderson model with infinite Coulomb repulsion U in the random phase
approximation. The Neel temperature and the superconducting critical
temperature are obtained as functions of electronic density (chemical pressure)
and hybridization V (pressure). It is found that close to the region where the
system exhibits magnetic order the critical temperature T_c is much smaller
than the Neel temperature, in qualitative agreement with some T_N/T_c ratios
found for some heavy-fermion materials. In our study, all the magnetic and
superconducting physical behaviour of the system has its origin in the
fluctuating boson fields implementing the infinite on-site Coulomb repulsion
among the f-electrons.Comment: 9 pages, 2 figure
Facilitating the analysis of a UK national blood service supply chain using distributed simulation
In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance
Multi-Channel Kondo Necklace
A multi--channel generalization of Doniach's Kondo necklace model is
formulated, and its phase diagram studied in the mean--field approximation. Our
intention is to introduce the possible simplest model which displays some of
the features expected from the overscreened Kondo lattice. The conduction
electron channels are represented by sets of pseudospins \vt_{j}, , which are all antiferromagnetically coupled to a periodic array of
|\vs|=1/2 spins. Exploiting permutation symmetry in the channel index
allows us to write down the self--consistency equation for general . For
, we find that the critical temperature is rising with increasing Kondo
interaction; we interpret this effect by pointing out that the Kondo coupling
creates the composite pseudospin objects which undergo an ordering transition.
The relevance of our findings to the underlying fermionic multi--channel
problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX,
submitted for publicatio
Mechanical properties in crumple-formed paper derived materials subjected to compression
The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8–1.3 g cm−3, and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications
Mutual visibility by luminous robots without collisions
We consider the Mutual Visibility problem for anonymous dimensionless robots with obstructed visibility moving in a plane: starting from distinct locations, the robots must reach, without colliding, a configuration where no three of them are collinear. We study this problem in the luminous robots model, in which each robot has a visible light that can assume colors from a fixed set. Among other results, we prove that Mutual Visibility can be solved in SSynch with 2 colors and in ASynch with 3 colors. If an adversary can interrupt and stop a robot moving to its computed destination, Mutual Visibility is still solvable in SSynch with 3 colors and, if the robots agree on the direction of one axis, also in ASynch. As a byproduct, we provide the first obstructed-visibility solutions to two classical problems for oblivious robots: collision-less convergence to a point (also known as near-gathering) and circle formation
- …