10,657 research outputs found

    Supersymmetric Contributions to Weak Decay Correlation Coefficients

    Full text link
    We study supersymmetric contributions to correlation coefficients that characterize the spectral shape and angular distribution for polarized muon- and beta-decays. In the minimal supersymmetric Standard Model (MSSM), one-loop box graphs containing superpartners can give rise to non-(V-A)x(V-A) four fermion operators in the presence of left-right or flavor mixing between sfermions. We analyze the present phenomenological constraints on such mixing and determine the range of allowed contributions to the weak decay correlation coefficients. We discuss the prospective implications for future muon- and beta-decay experiments, and argue that they may provide unique probes of left-right mixing in the first generation scalar fermion sector.Comment: Revised version - to appear in Phys.Rev.

    Macromolecular separation through a porous surface

    Full text link
    A new technique for the separation of macromolecules is proposed and investigated. A thin mesh with pores comparable to the radius of gyration of a free chain is used to filter chains according to their length. Without a field it has previously been shown that the permeability decays as a power law with chain length. However by applying particular configurations of pulsed fields, it is possible to have a permeability that decays as an exponential. This faster decay gives much higher resolution of separation. We also propose a modified screen containing an array of holes with barb-like protrusions running parallel to the surface. When static friction is present between the macromolecule and the protrusion, some of the chains get trapped for long durations of time. By using this and a periodic modulation of an applied electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi

    Quantum state reconstruction via continuous measurement

    Full text link
    We present a new procedure for quantum state reconstruction based on weak continuous measurement of an ensemble average. By applying controlled evolution to the initial state new information is continually mapped onto the measured observable. A Bayesian filter is then used to update the state-estimate in accordance with the measurement record. This generalizes the standard paradigm for quantum tomography based on strong, destructive measurements on separate ensembles. This approach to state estimation can be non-destructive and real-time, giving information about observables whose evolution cannot be described classically, opening the door to new types of quantum feedback control.Comment: 4 pages, 2 figure

    The Measurement Calculus

    Get PDF
    Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model which is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call patterns, and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.Comment: 46 pages, 2 figures, Replacement of quant-ph/0412135v1, the new version also include formalization of several other measurement-based models: Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. To appear in Journal of AC

    On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    Get PDF
    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area

    Simple scheme for implementing the Deutsch-Jozsa algorithm in thermal cavity

    Get PDF
    We present a simple scheme to implement the Deutsch-Jozsa algorithm based on two-atom interaction in a thermal cavity. The photon-number-dependent parts in the evolution operator are canceled with the strong resonant classical field added. As a result, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure. Besides, large detuning between the atoms and the cavity is not necessary neither, leading to potential speed up of quantum operation. Finally, we show by numerical simulation that the proposed scheme is equal to demonstrate the Deutsch-Jozsa algorithm with high fidelity.Comment: 7 pages, 4 figure

    Strongly Enhanced Spin Squeezing via Quantum Control

    Full text link
    We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This interaction can be phase-matched, resulting in exponential enhancement of squeezing. In practice the scaling and peak squeezing depends on decoherence, technical loss, and noise. A simplified model indicates ~10 dB of squeezing should be achievable with current laboratory parameters.Comment: 4 pages, 2 figures

    Empirical Uncertainty Estimators for Astrometry from Digital Databases

    Get PDF
    In order to understand the positional uncertainties of arbitrary objects in several of the current major databases containing astrometric information, a sample of extragalactic radio sources with precise positions in the International Celestial Reference Frame (ICRF) is compared with the available positions of their optical counterparts. The discrepancies between the radio and various optical positions are used to derive empirical uncertainty estimators for the USNO-A2.0, USNO-A1.0, Guide Star Selection System (GSSS) images, and the first and second Digitized Sky Surveys (DSS-I and DSS-II). In addition, an estimate of the uncertainty when the USNO-A2.0 catalog is transferred to different image data is provided. These optical astrometric frame uncertainties can in some cases be the dominant error term when cross-identifying sources at different wavelengths.Comment: 12 pages including 2 figures and 1 table. Accepted for publication in The Astronomical Journal, October 1999. Values in Table 1 for DSS I corrected 99-07-1

    CSM-363 - Six theories of operation refinement for partial relation semantics

    Get PDF
    In this paper we analyse total correctness operation refinement on a partial relation semantics for specification. In particular we show that three theories: a relational completion approach, a proof-theoretic approach and a functional models approach, are all equivalent. This result holds whether or not preconditions are taken to be minimal or fixed conditions for establishing the postcondition

    CSM-364 - An analysis of operation refinement in Z

    Get PDF
    In this paper we analyse and compare several notions of operation refinement for specifications in Z. In particular we show that three theories: relational completion, proof-theoretic and functional (models) are all equivalent
    • …
    corecore