
Six theories of operation refinement for partial
relation semantics

Moshe Deutsch1, Martin C. Henson1, Steve Reeves2

1Department of Computer Science, University of Essex, UK.
2Department of Computer Science, University of Waikato, New Zealand.
mdeuts@essex.ac.uk, hensm@essex.ac.uk, stever@cs.waikato.ac.nz

Abstract. In this paper we analyse total correctness operation refine-
ment on a partial relation semantics for specification. In particular we
show that three theories: a relational completion approach, a proof-
theoretic approach and a functional models approach, are all equivalent.
This result holds whether or not preconditions are taken to be minimal
or fixed conditions for establishing the postcondition.

Keyword: Specification Language; Specification Logic; Refinement;

1 Introduction

In this paper we provide a mathematical analysis of total correctness opera-
tion refinement for partial relation semantics. An important example of such
a semantics is the specification language Z. We will examine refinement when
preconditions are interpreted as minimal conditions for establishing the postcon-
ditions (they may be weakened) or fixed conditions (they are firing or trigger
conditions). The former approach is covered in sections 3 and 4, and the latter
in sections 5 and 6.
Our aim is to understand better the various techniques which have been pro-
posed and to link them carefully to what appear to be prima facie alternative
approaches. In particular we will look at the standard relational completion ap-
proaches (see for example [10] and [2]) and relate them to a variety of proof
theoretic approaches and to frameworks in which specifications are interpreted
to be sets of implementations (rather in the spirit of the uses to which Matin-
Löf’s theory has been put [6], though our investigation takes place in classical
logic).
Such an investigation becomes possible in virtue of the logic for Z reported in,
for example, [4] and a novel and simple technique of rendering all the theo-
ries of refinement in an unusual proof-theoretic form: sets of introduction and
elimination rules. This leads to a uniform and simple method for proving the
various equivalence results. As such it contrasts with the more semantic based
techniques employed in [1].
Our paper concludes with a review of what has been established and an agenda
for further investigation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/19749329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Preliminaries

In this first section we will revise a little Z logic, settling some notational con-
ventions in the process. Additional detail can be found in appendix A and in
[4].
In [4] Z schemas, and operation schemas in particular, were formalised as sets of
bindings. This captures the informal account to be found in the literature (e.g.
[3], [10]). In this paper we will use the meta-variable U (with decorations) to
range over operation schema. As an example, consider the operation schema:

Ex0

x, x′ : N

x = 0
x′ < 10

Ex0 has the the type P[x : N, x′ : N], and is understood to be a set of bindings
of schema type [x : N, x′ : N]. Recall that unprimed labels (such as x) are under-
stood to be observations of the state before the operation, whereas primed labels
(such as x′) are observations of the state afterwards. Each operation schema U
will have a type of the form PT where T is a schema type. The type T can, addi-
tionally, always be partitioned as the (compatible) union of its input (or before)
type T in , and its output (or after) type T out′ . That is, T = T in g T out′ . For
the schema Ex0 we have T in = [x : N] and T out′ = [x′ : N]. In this paper, since
we are only dealing with operation refinement, we can assume that all operation
schemas have the type PT where T = T in g T out′ . With this in place we can
omit the type superscripts in most places in the sequel.

Definition 1 (Semantics for atomic schemas).

[T | P] =df {z ∈ T | z .P}

Note that this definition, in which the operation schema has been written hor-
izontally, draws bindings from the natural carrier of the type T . As a conse-
quence, writing t(⊥) for any term of the appropriate type which contains an
instance of a constant ⊥, we have:

Lemma 1.
t(⊥) ∈ U

false

2

The bindings 〈| xV0, x ′Vn |〉, where n < 10, are all elements of Ex0. In fact
there are no other elements in this case. We can formalise the idea of the pre-
conditions of the schema (domain of the relation the schema denotes) to express
the partiality involved.

Definition 2. Let T in ¹ V .

Pre U xV =df ∃ z ∈ U • x =T in z

Proposition 1. The following introduction and elimination rules are immedi-
ately derivable for preconditions:

t0 ∈ U t0 =T in t1
Pre U t1

Pre U t y ∈ U , y =T in t ` P
P

where y is fresh. 2

Clearly, the precondition of Ex0 is not (and for operation schemas in general, will
not be) the whole of [x : N] (in general, T in). In this sense operation schemas
denote partial relations.
Naturally, an immediate question arises: what does it mean for one operation
schema to refine another? More generally, we are asking: what does it mean for
one partial relation to refine another?

3 Refinement with preconditions considered minimal

We begin by introducing three distinct notions of refinement based on three
distinct answers to the questions above and then we go on to compare them.
This serves to illuminate them all, particularly the notion based on the lifted-
totalisation (see below) which is the de facto standard for Z.

3.1 S-refinement

In this section we introduce a purely proof theoretic characterisation of refine-
ment, which is closely connected to refinement as introduced by Spivey in, for
example, [8] and as discussed in [5] and [7].
This notion is based on two basic observations regarding the properties one
expects in a refinement: firstly, that a refinement may involve the reduction
of non-determinism; secondly that, if preconditions are minimal, a refinement
may also involve the expansion of the domain of definition. Put another way,
we have a refinement providing that postconditions do not weaken (we do not
permit an increase in non-determinism in a refinement) and that preconditions
do not strengthen (we do not permit requirements in the domain of definition to
disappear in a refinement).
This notion can be captured by forcing the refinement relation to hold exactly
when these conditions apply. S-refinement is written U0 ws U1 and is given by
the definition that leads directly to the following rules:

Proposition 2. Let z , z0, z1 be fresh variables.

Pre U1 z ` Pre U0 z Pre U1 z0, z0 ? z ′1 ∈ U0 ` z0 ? z ′1 ∈ U1

U0 ws U1
(ws

+)

U0 ws U1 Pre U1 t
Pre U0 t (ws

−

)

U0 ws U1 Pre U1 t0 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1
(ws

−
)

2

This theory does not depend on, and makes no reference to, the ⊥ value. It can
be formalised in the core theory ZC .

3.2 The chaotic relational completion

In this section we review W•-refinement (written U0 ww• U1): this notion, adapted
from, for example, [10], is based on a relational completion operator. For nota-
tional convenience we will write T ? for the set T in

⊥ ? T out′
⊥ .

The lifted totalisation of a set of bindings can be defined as follows:

Definition 3. •
U =df {z ∈ T ? | Pre U z ⇒ z ∈ U }

Proposition 3. The following introduction and elimination rules are derivable
for lifted totalised sets:

t ∈ T ? Pre U t ` t ∈ U

t ∈ •
U

(•+)

and:
t ∈ •

U Pre U t
t ∈ U (•−)

t ∈ •
U

t ∈ T ? (•−)

2

Lemma 2. The following are derivable:

U ⊆ •
U

(i)
⊥∈ •

U
(ii) ¬Pre U t t ∈ T ?

t ∈ •
U

(iii)

2

Lemmas 2(i), (ii) and (iii) demonstrate that definition 3 is consistent with the
intentions described in [10] chapter 16: the underlying partial relation is con-
tained in the completion; the undefined element is present in the relation, and
more generally, each value outside the precondition maps to every value in the
range of the relation.
W•-refinement is defined as follows:

Definition 4.
U0 ww• U1 =df

•
U0 ⊆

•
U1

Obvious introduction and elimination rules follow from this.

3.3 F-refinement

To a logician, a specification resembles a theory; so a natural question is: what
are the models of the theory? A computer scientist may ask a closely related
question: when is a program an implementation of the specification? We will, in
this section, consider deterministic programs and model them as (total) func-
tions.
From the logical perspective, we are interested in all the models of a theory, so
given a putative model g and a theory U , we would be inclined to write:

g |= U

to represent the statement that g is a model of U . Within our application area
in computer science we might prefer to read this as a relation of implementation.
To signal this interpretation we shall in fact write this judgement as:

g AU

to be pronounced “g implements (is an implementation of) U ”.
Our third approach to refinement is to consider specifications as sets of imple-
mentations and then to define refinement as containment of implementations.

Definition 5.

g Af U =df (∀ z ∈ T in
⊥ • Pre U z ⇒ z ? (g z)′ ∈ U) ∧ g ∈ T in

⊥ → T out′
⊥

Then we can prove the following.

Proposition 4. The following introduction and elimination rules are derivable:

z ∈ T in
⊥ ,Pre U z ` z ? (g z)′ ∈ U g ∈ T in

⊥ → T out′
⊥

g Af U
(A+

f)

where z is a fresh variable.

g Af U Pre U t t ∈ T in
⊥

t ? (g t)′ ∈ U
(A−f

)
g Af U

g ∈ T in
⊥ → T out′

⊥
(A−f

)

2

This is sufficient technical development to allow us to explore refinement. We
can answer the question: when is U0 a refinement of U1? A reasonable answer
is: when any implementation of U0 is also an implementation of U1. After all,
we wish to be able to replace any specification U1 by its refinement U0, and if
all potential implementations of the latter are implementations of this former
we are quite safe. Thus we are led to:

Definition 6.
Û =df {z | z Af U }

Then we have F-refinement (“F” for function).

Definition 7.
U0 wf U1 =df Û0 ⊆ Û1

Obvious introduction and elimination rules for F-refinement follow from this
definition.

4 Three equivalent theories

In this section we demonstrate that our three theories of refinement are all
equivalent. In doing this we will see clearly the critical role that the ⊥ value
plays.
We shall be showing that all judgements of refinement in one theory are con-
tained among the refinements sanctioned by another. Such results will always
be established proof-theoretically. Specifically we will show that the refinement
relation of a theory T0 satisfies the elimination rule (or rules) for refinement
of another theory T1. Since the elimination rules and introduction rules of a
theory enjoy the usual symmetry property, this is sufficient to show that all
T0-refinements are also T1 refinements.

4.1 W•-refinement and S-refinement are equivalent

We begin by showing that W•-refinement satisfies the two S-refinement elimina-
tion rules. Firstly the rule for preconditions.

Proposition 5. The following rule is derivable:

U0 ww• U1 Pre U1 t

Pre U0 t

Proof

Consider the following derivation:

U0 ww• U1

¬Pre U0 t
()

Pre U1 t
t0 ∈ T in

⊥ ⊥′∈ T out′
⊥

t0? ⊥′∈ T ?

t0? ⊥′∈
•

U0

((iii))

t0? ⊥′∈
•

U1 Pre U1 t
t0? ⊥′∈ U1

false
()

Pre U0 t
()

where t0 =df t ¹ T in . 2

Turning now to the second elimination rule in S-refinement.

Proposition 6. The following rule is derivable:

U0 ww• U1 Pre U1 t0 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

Proof

U0 ww• U1

t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈
•

U0

((i))

t0 ? t ′1 ∈
•

U1 Pre U1 t0
t0 ? t ′1 ∈ U1

2

Theorem 1.
U0 ww• U1

U0 ws U1

2

Proof

This follows immediately, by (w+
s), from propositions 5 and 6 .1

2

We now show that S-refinement satisfies the W•-elimination rule.

Proposition 7.

U0 ws U1 t ∈
•

U0

t ∈
•

U1

Proof

t ∈
•

U0

t ∈ T ?

U0 ws U1 Pre U1 t
()

t ∈
•

U0

U0 ws U1 Pre U1 t
()

Pre U0 t
t ∈ U0

t ∈ U1

t ∈
•

U1

()

2

Theorem 2.
U0 ws U1

U0 ww• U1

2

Theorems 1 and 2 together establish that the theories of S-refinement and W•-
refinement are equivalent.

4.2 F-refinement and W•-refinement are equivalent (in Z⊥
C + AC)

R-refinement We begin this analysis by defining, by way of an intermediate
stage, the set of total functions compatible with an operation schema. This forms
a bridge between F-refinement and W•-refinement.

Definition 8.
U =df {z ∈ T in

⊥ → T out′
⊥ | z ⊆ •

U }
Then we have:

Definition 9.
g Ar U =df g ∈ U

And then R-refinement is simply: U0 wr U1 =df U0 ⊆ U1 with the obvious
introduction and elimination rules.

R-refinement and W•-refinement are equivalent We begin by showing
that R-refinement satisfies the W•-refinement elimination rule.

Proposition 8. The following rule is derivable:

U0 wr U1 t ∈
•

U0

t ∈
•

U1

Proof

The proof requires the axiom of choice (see the step labelled
(AC) below).

t ∈
•

U0

∃ g ∈ T in
⊥ → T out′

⊥ • t ∈ g ∧ g ⊆
•

U0

(AC)

δ....
t ∈

•
U1

t ∈
•

U1

()

where δ is:

U0 wr U1

y ∈ T in
⊥ → T out′

⊥
()

y ⊆
•

U0

()

y ∈ U0

y ∈ U1

y ⊆
•

U1 t ∈ y ()

t ∈
•

U1

2

From this we have:

Theorem 3.

U0 wr U1

U0 ww• U1

We now show that W•-refinement satisfies the R-refinement elimination rule.

Proposition 9.

U0 ww• U1 g ∈ U0

g ∈ U1

Proof

g ∈ U0

g ∈ T in
⊥ → T out′

⊥

U0 ww• U1

g ∈ U0

g ⊆
•

U0 t ∈ g ()

t ∈
•

U0

t ∈
•

U1

g ⊆
•

U1

()

g ∈ U1

2

Theorem 4.

U0 ww• U1

U0 wr U1

2

Theorems 3 and 4 together demonstrate that W•-refinement and R-refinement
are equivalent.

R-refinement and F-refinement are equivalent In this case we show that
the notions of implementation (rather than refinement) are equivalent by the
same strategy involving elimination rules. We first establish that F-implementation
implies R-implementation:

Proposition 10. The following rules are derivable:

g Af U

g ⊆ •
U

g Af U

g ∈ T in
⊥ → T out′

⊥

Proof

g Af U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z0 ? z ′1 ∈ T ∗

g Af U Pre U z0
()

Pre U z0
()

z0 ∈ T in
⊥

z0 ? (g z0)′ ∈ U

δ....
z ′1 = (g z0)′

z0 ? z ′1 ∈ U

z0 ? z ′1 ∈
•
U

()

g ⊆ •
U

()

where δ is:
g Af U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z ′1 = (g z0)′

The second rule is immediate. 2

Theorem 5.
g Af U
g Ar U

2

Now we show that R-implementation implies F-implementation.

Proposition 11.

g Ar U Pre U t t ∈ T in
⊥

t ? (g t)′ ∈ U

g Ar U

g ∈ T in
⊥ → T out′

⊥

Proof

g Ar U

g ⊆ •
U

g Ar U

g ∈ T in
⊥ → T out′

⊥ t ∈ T in
⊥

t ? (g t)′ ∈ g

t ? (g t)′ ∈ •
U Pre U t
t ? (g t)′ ∈ U

The second rule is immediate. 2

Theorem 6.
g Ar U
g Af U

2

Then, from 5 and 6, we see that the two notions of implementation are equivalent.
Hence, so are the two notions of refinement.
Despite their superficial dissimilarity, all three theories are, then, equivalent. We
will examine in section 7 some consequences of these results.

5 Refinement with preconditions considered fixed

We now introduce three further notions of refinement; in this case where non-
determinism may be reduced but where the preconditions are considered fixed.

5.1 SP-refinement

This is an alternative proof theoretic characterisation of refinement, which is
closely connected to refinement in the behavioural approach, as discussed, for
example, in [2] and [9].
This special case of S-Refinement may involve reduction of non determinism but
insists on the stability of the preconditions. SP-refinement is written U0 wsp U1

and is given by the definition that leads directly to the following rules:

Proposition 12. Let z , z0, z1 be fresh variables.

Pre U1 z ` Pre U0 z z0 ? z ′1 ∈ U0 ` z0 ? z ′1 ∈ U1

U0 wsp U1
(w+

sp)

U0 wsp U1 Pre U1 t

Pre U0 t
(w−sp

)
U0 wsp U1 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1
(w−sp

)

5.2 The abortive relational completion

In this section we review W@-refinement (written U0 ww@
U1). This notion is

based on a relational completion operator, but this time takes an abortive ap-
proach with respect to values outside the precondition. The abortive lifted total-
isation of a set of bindings is defined as follows:

Definition 10.

@
U =df {z0 ? z ′1 ∈ T ? | z0 ? z ′1 ∈ U ∨ (¬ Pre U z0 ∧ z ′1 =⊥′)}

Proposition 13. The following introduction and elimination rules are deriv-
able:

t0 ? t ′1 ∈ U

t0 ? t ′1 ∈
@
U

(@+)
t0 ? t ′1 ∈ T ? ¬ Pre U t0 t ′1 =⊥′

t0 ? t ′1 ∈
@
U

(@+)

t0 ? t ′1 ∈
@
U t0 ? t ′1 ∈ U ` P ¬ Pre U t0, t ′1 =⊥′` P

P (@−)

t0 ? t ′1 ∈
@
U

t0 ? t ′1 ∈ T ? (@−)

2

Note that it is, sometimes, useful to use the following version of (@+) rule (e.g.
in the proof of proposition 21), which is based upon implication introduction,
rather than disjunction introduction.

Proposition 14.

t0 ? t ′1 ∈ T ? Pre U t0 ∨ t ′1 6=⊥′` t0 ? t ′1 ∈ U

t0 ? t ′1 ∈
@
U

(@+)

2

Lemma 3. The following are derivable:

@
U ⊆ •

U
(i)

⊥∈ @
U

(ii)
¬ Pre U t t ∈ T in

⊥

t? ⊥′∈ @
U

(iii)

t0 ? t ′1 ∈
@
U t ′1 6=⊥′

t0 ? t ′1 ∈ U
(iv)

t0 ? t ′1 ∈
@
U t0 =⊥

t ′1 =⊥′ (v)

2

W@-refinement is then defined as follows:

Definition 11.

U0 ww@
U1 =df

@
U0 ⊆

@
U1

Obvious introduction and elimination rules follow from this.

5.3 FP-refinement

Like F-refinement, FP-refinement considers specifications to be sets of imple-
mentations, and then we define refinement as containment of implementations.
Unlike F-refinement, implementations abort outside the domain of definition,
rather than behave chaotically.

Definition 12.

g Afp U =df (∀ z ∈ T in
⊥ • Pre U z ∨ (g z)′ 6=⊥′⇒ z?(g z)′ ∈ U) ∧ g ∈ T in

⊥ → T out′
⊥

Then we can prove the following.

Proposition 15. The following introduction and elimination rules are deriv-
able:

z ∈ T in
⊥ ,Pre U z ∨ (g z)′ 6=⊥′` z ? (g z)′ ∈ U g ∈ T in

⊥ → T out′
⊥

g Afp U
(A+

fp)

where z is a fresh variable.

g Afp U t ∈ T in
⊥ Pre U t

t ? (g t)′ ∈ U
(A−fp

)
g Afp U t ∈ T in

⊥ (g t)′ 6=⊥′
t ? (g t)′ ∈ U

(A−fp
)

g Afp U

g ∈ T in
⊥ → T out′

⊥
(A−fp

)

2

Definition 13.
�
U =df {z | z Afp U }

Then we have FP-refinement.

Definition 14.

U0 wfp U1 =df

�
U0 ⊆

�
U1

Obvious introduction and elimination rules for FP-refinement follow from this
definition.

6 Three equivalent theories

In this section we demonstrate that this second set of three theories of refinement
are all equivalent.

6.1 W@-refinement and SP-refinement are equivalent

We begin by showing that W@-refinement satisfies the two SP-refinement elimi-
nation rules. Firstly the rule for preconditions.

Proposition 16. The following rule is derivable:

U0 ww@
U1 Pre U1 t

Pre U0 t

Proof

Consider the following derivation:

U0 ww@
U1

¬ Pre U0 t
()

Pre U1 t
t ∈ T in

⊥

t? ⊥′∈
@

U0

((iii))

t? ⊥′∈
@

U1

t? ⊥′∈ U1
()

false
Pre U1 t ¬ Pre U1 t

()

false
false

()

Pre U0 t
()

2

Turning now to the second elimination rule in SP-refinement.

Proposition 17. The following rule is derivable:

U0 ww@
U1 t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈ U1

Proof

U0 ww@
U1

t0 ? t ′1 ∈ U0

t0 ? t ′1 ∈
@

U0

t0 ? t ′1 ∈
@

U1 t0 ? t ′1 ∈ U1
()

t0 ? t ′1 ∈ U0 t ′1 =⊥′ ()

false
t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈ U1
()

2

Theorem 7.
U0 ww@

U1

U0 wsp U1

2

We now show that SP-refinement satisfies the W@-elimination rule.

Proposition 18.

U0 wsp U1 t0 ? t ′1 ∈
@

U0

t0 ? t ′1 ∈
@

U1

Proof

t0 ? t ′1 ∈
@

U0

U0 wsp U1 t0 ? t ′1 ∈ U0
()

t0 ? t ′1 ∈ U1

t0 ? t ′1 ∈
@

U1

β....
t0 ? t ′1 ∈

@
U1

t0 ? t ′1 ∈
@

U1

()

where β stands for the following branch:

t0 ? t ′1 ∈
@

U0

t0 ? t ′1 ∈ T ?

U0 wsp U1 ¬ Pre U0 t0
()

¬ Pre U1 t0 t ′1 =⊥′ ()

t0 ? t ′1 ∈
@

U1

2

Theorem 8.
U0 wsp U1

U0 ww@
U1

2

Theorems 7 and 8 together establish that the theories of SP-refinement and
W@-refinement are equivalent.

6.2 FP-refinement and W@-refinement are equivalent (in Z⊥
C + AC)

RP-refinement As in section 4.2, we begin the analysis by defining the set
of total functions compatible with an operation schema, which forms a bridge
between FP-refinement and W@-refinement.

Definition 15.
Ũ =df {z ∈ T in

⊥ → T out′
⊥ | z ⊆ @

U }
Then we have:

Definition 16.
g Arp U =df g ∈ Ũ

And then RP-refinement is simply: U0 wrp U1 =df Ũ0 ⊆ Ũ1 with the usual
introduction and elimination rules.

RP-refinement and W@-refinement are equivalent We begin by showing
that RP-refinement satisfies the W@-refinement elimination rule.

Proposition 19. The following rule is derivable:

U0 wrp U1 t ∈
@

U0

t ∈
@

U1

Proof

The proof is identical to the one of proposition 8, where every
•
Ui

is substituted by
@
Ui and every Ui is substituted by Ũi (i ∈ 2).

The proof requires the axiom of choice. 2

From this we have:

Theorem 9.
U0 wrp U1

U0 ww@
U1

We now show that W@-refinement satisfies the RP-refinement elimination rule.

Proposition 20.
U0 ww@

U1 g ∈ Ũ0

g ∈ Ũ1

Proof

The proof is identical to the one of proposition 9, where every
•
Ui

is substituted by
@
Ui and every Ui is substituted by Ũi (i ∈ 2).

2

Theorem 10.

U0 ww@
U1

U0 wrp U1

2

Theorems 9 and 10 together demonstrate that W@-refinement and RP-refinement
are equivalent.

RP-refinement and FP-refinement are equivalent We now show that the
notions of implementation are equivalent by the same strategy involving elimina-
tion rules. We first establish that FP-implementation implies RP-implementation:

Proposition 21. The following rules are derivable:

g Afp U

g ⊆ @
U

g Afp U

g ∈ T in
⊥ → T out′

⊥

Proof

g Afp U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z0 ? z ′1 ∈ T ∗

δ....
z0 ? (g z0)′ ∈ U

g Afp U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z ′1 = (g z0)′

z0 ? z ′1 ∈ U

z0 ? z ′1 ∈
@
U

()

g ⊆ @
U

()

where δ stands for the following branch:

Pre U z0 ∨ z ′1 6=⊥′
()

β0....
z0 ? (g z0)′ ∈ U

β1....
z0 ? (g z0)′ ∈ U

z0 ? (g z0)′ ∈ U
()

where β0 is:

g Afp U

α....
z0 ∈ T in

⊥ Pre U z0
()

z0 ? (g z0)′ ∈ U

and β1 is:

g Afp U

α....
z0 ∈ T in

⊥

z ′1 6=⊥′
()

g Afp U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z ′1 = (g z0)′

(g z0)′ 6=⊥′
z0 ? (g z0)′ ∈ U

where α stands for the following branch:

g Afp U

g ∈ T in
⊥ → T out′

⊥ z0 ? z ′1 ∈ g
()

z0 ? z ′1 ∈ T ?

z0 ∈ T in
⊥

The second rule is immediate. 2

Theorem 11.
g Afp U
g Arp U

2

Now we show that RP-implementation implies FP-implementation.

Proposition 22. The following rules are derivable:

g Arp U t ∈ T in
⊥ Pre U t

t ? (g t)′ ∈ U
g Arp U t ∈ T in

⊥ (g t)′ 6=⊥′
t ? (g t)′ ∈ U

g Arp U

g ∈ T in
⊥ → T out′

⊥

Proof

The first rule:

δ....
t ? (g t)′ ∈ @

U

t ? (g t)′ ∈ •
U

((i))
Pre U t

t ? (g t)′ ∈ U

The second rule:

δ....
t ? (g t)′ ∈ @

U (g t)′ 6=⊥′
t ? (g t)′ ∈ U

((iv))

where δ is:

g Arp U

g ⊆ @
U

g Arp U

g ∈ T in
⊥ → T out′

⊥ t ∈ T in
⊥

t ? (g t)′ ∈ g

t ? (g t)′ ∈ @
U

The third rule is immediate. 2

Theorem 12.
g Arp U
g Afp U

2

Then, from 11 and 12, we see that the two notions of implementation are equiv-
alent. Hence, so are the two notions of refinement.

7 Conclusions and future work

The model of schemas introduced in W•-refinement not only totalises the schema
as a set of bindings, it also introduces the ⊥ values and extends the domains
and co-domains accordingly. The totalisation then stipulates chaotic behaviour
outside the precondition and additionally for the ⊥ values.
Why is it necessary to include the new values? What are the consequences of
totalisation without lifting?
Our analysis provides a very clear mathematical explanation for lifting: with
non-lifted totalisation it is not possible to prove proposition 5. Note that the
proof of that result made explicit use of ⊥ value. Indeed, we can do better: the
following is an explicit counterexample:

Definition 17.

(i)
¦
U =df {z ∈ T | Pre U z ⇒ z ∈ U } (ii)True =df [T | true]

Proposition 23.
¦

True =
¦

Chaos

2

It is an immediate consequence that the more permissive notion of refinement
does not, for example, insist that preconditions do not strengthen.
Much the same observation can be made for the other family of refinement the-
ories: again the lifting is critical in preventing the preconditions from strength-
ening.
Our refinement theories S-refinement and SP-refinement are entirely proof-theoretic,
characterising refinement directly in terms of the behaviour of the predicates
involved. These are quite closely related to conditions proposed originally by
Spivey (these roughly correspond to the premises of our introduction rule for
S-refinement). By reformulating this approach as a theory, rather than sufficient
conditions, we establish an equivalent framework in which the model extension,
with the lifting and completions involved, are unnecessary. Although we have
not shown it here, there are very simple connections between S-refinement and
an equivalent theory of refinement based on weakest preconditions: this will be
reported in future work.
The approach to specification based on sets of implementations is a well estab-
lished but somewhat different tradition, and is most usually investigated in a

constructive setting. We have demonstrated that what look like radically differ-
ent models of specification and refinement are in fact intimately related.
What we have not reported here is an extension to data refinement in which data
simulation relations play a significant role. There is much to say on this topic,
but that requires the present work as a necessary precursor. We will in future
work show that it is possible to formulate S-like theories which are equivalent
to generalisations of the W-frameworks (the obvious generalisations are only
equivalent for restricted forms of simulation). Moreover there are interesting
results in weakest precondition data refinement to be developed and explored.
Finally, we have not mentioned the implications for the schema calculus. In con-
sidering Z as a prime example of a specification language that fits the technical
development explored in this paper, one will want to know how the schema
operations interact with refinement: in particular a treatment of monotonicity
properties. It is quite well-known that the Z schema calculus has poor monotonic-
ity properties in the relational model. Our results demonstrate that this is not a
special feature of the relational model (because all the alternative approaches are
equivalent). Indeed these poor properties are it seems intimately linked with the
underlying partial relation semantics. One interesting set of approaches which
need to be fully investigated are the consequences of restricting any one of the
refinement theories we have outlines here to atomic schemas only; and then to
redefine the semantics of the schema operators over the new semantics (rather
than over partial relations). In this way refinement would reduce to the subset
relation on the semantics and would be fully monotonic. Naturally the nature of
the schema algebra would change, but those changes would be very interesting
to explore.

8 Acknowledgements

We would like to thank the New Zealand Foundation for Research, Science
and Technology (grant reference: UOWX0011) for financially supporting this
research. Moshe Deutsch is supported by the British Council through an ORS
award. Special thanks for particularly important discussions and comments go
to Lindsay Groves, Greg Reeve, Ray Turner and Jim Woodcock.

References

1. W. P. DeRoever and K. Engelhardt. Data refinement: model-oriented proof methods
and their comparison. Prentice Hall International, 1998.

2. John Derrick and Eerke Boiten. Refinement in Z and Object-Z: Foundations and
Advanced Applications. Formal Approaches to Computing and Information Tech-
nology. Springer, May 2001.

3. A. Diller. Z: An introduction to formal methods (2nd ed.). J. Wiley and Sons, 1994.

4. M. C. Henson and S. Reeves. Investigating Z. Journal of Logic and Computation,
10(1):1–30, 2000.

5. S. King. Z and the Refinement Calculus. In D. Bjørner, C. A. R. Hoare, and
H. Langmaack, editors, VDM ’90 VDM and Z—Formal Methods in Software De-
velopment, volume 428 of Lecture Notes in Computer Science, pages 164–188.
Springer-Verlag, April 1990.

6. P. Martin-Löf. Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science VI, pages 153–175. North Holland, 1982.

7. B. Potter, J. Sinclair, and D. Till. An introduction to formal specification and Z.
Prentice Hall, 2nd. edition, 1996.

8. J. M. Spivey. The Z notation: A reference manual, 2nd ed. Prentice Hall, 1992.
9. B. Strulo. How firing conditions help inheritance. In Proceedings ZUM ’95, LNCS

Vol. 967, pages 264–275. Springer Verlag, 1995.
10. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice

Hall, 1996.

A Appendix

Our mathematical account takes place in a simple conservative extension Z⊥C of ZC
the core Z-logic of [4]. The only modification we need to make is to include the new
undefined terms which are explicitly needed in the approach taken in [10]. Specifically:
the types of ZC are extended to include terms ⊥T for every type T . There are, addi-
tionally, a number of axioms which ensure that all the new ⊥T values interact properly,
e.g.

⊥[l0:T0···ln :Tn]= 〈| l0V ⊥T0 · · · lnV ⊥Tn |〉
In other words, ⊥[l0:T0···ln :Tn] .li =⊥Ti (0 ≤ i ≤ n). Note that this is the only axiom
concerning undefined bindings, hence, binding construction is non-strict with respect
to the ⊥T values.
Finally, the extension of Z⊥C which introduces schemas as sets of bindings and the
various operators of the schema calculus is undertaken as usual (see [4]) but the carrier
sets of the types must be adjusted to form what we call the natural carrier sets which
are those sets of elements of types which explicitly exclude the ⊥T values:

Definition 18. The natural carriers for each type are defined by closing:

N =df {zN | z 6=⊥N∧ z = z}

under the operations of cartesian product, powerset and schema set.2

As a result the schema calculus is hereditarily ⊥-free.
We indicated in the first section that we can always write the type of operation schemas
as P(T in gT out′) where T in is the type of the input sub-binding and T out′ is the type
of the output sub-binding. We also permit binding concatenation, written t0 ? t1 when
the alphabets of t0 and t1 are disjoint. This is, in fact, exclusively used for partitioning
bindings in operation schemas into before and after components, so the terms involved
are necessarily disjoint. We lift this operation to sets (of appropriate type):

C0 ? C1 =df {z0 ? z1 | z0 ∈ C0 ∧ z1 ∈ C1}
2 The notational ambiguity does not introduce a problem, since only a set can appear

in a term or proposition, and only a type can appear as a superscript.

The same restriction obviously applies here: the types of the sets involved must be
disjoint.
We will need total functions over types. These are easily introduced.

Definition 19.

T0 → T1 =df {g ∈ P(T0 ? T1) | unicity(g) ∧ total(g)}

Note that functions are modelled as subsets of T0 ? T1 rather than T0 × T1, and that
for notational convenience, we let g (etc.) range over terms of type P(T0 ? T1). In fact
we only do this when such a term is a function.
When g is known to be an element of T0 → T1 and z0 ∈ T0, we will write g z (as
usual) for the unique element z1 ∈ T1 such that z0 ? z1 ∈ g .

