16,805 research outputs found

    Density dependent spin susceptibility and effective mass in interacting quasi-two dimensional electron systems

    Full text link
    Motivated by recent experimental reports, we carry out a Fermi liquid many-body calculation of the interaction induced renormalization of the spin susceptibility and effective mass in realistic two dimensional (2D) electron systems as a function of carrier density using the leading-order `ladder-bubble' expansion in the dynamically screened Coulomb interaction. Using realistic material parameters for various semiconductor-based 2D systems, we find reasonable quantitative agreement with recent experimental susceptibility and effective mass measurements. We point out a number of open questions regarding quantitative aspects of the comparison between theory and experiment in low-density 2D electron systems

    Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    Get PDF
    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer

    Transcriptional profiling of SNAI2 regulated genes in primary human keratinocytes.

    Get PDF
    Epithelial to mesenchymal transition transcription factors (EMT-TFs) such as SNAI2 have been found to be expressed endogenously in epidermal stem and progenitor cells and downregulated upon differentiation. The presence of SNAI2 in progenitor cells is necessary to repress the expression of differentiation genes by binding directly to their promoters. SNAI2 is downregulated upon differentiation which allows expression of differentiation genes. Furthermore overexpression of SNAI2 can block the differentiation process suggesting that the levels of SNAI2 are crucial to epidermal cell fate decisions. To address on a genome wide level the genes that are impacted by changing the levels of SNAI2, we performed microarray analysis on SNAI2 knockdown and overexpressing epidermal progenitor cells. Here we provide a detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO): GSE55269

    Euler solution of multiblade rotor flow

    Get PDF
    A numerical method for solving the Euler equations for multiblade rotors has been developed and some preliminary results reported. The numerical scheme is a combination of several recent methods and algorithm improvements, adapted to the particular requirements of rotor-body interactions. A cylindrical basic grid has been used to study conventional multiblade helicopter rotors. Test calculations have been made for two- and six-blade rotors in hover and for a two-blade rotor in forward flight, under transonic tip conditions but without lift. The results show good agreement with experimental data

    Extracting high fidelity quantum computer hardware from random systems

    Full text link
    An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.Comment: 19 pages, 9 figures. Written for The Proceedings of the Nobelsymposium on qubits for future quantum computers, Gothenburg, May-0

    Topological surface states in three-dimensional magnetic insulators

    Full text link
    An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these "Hopf insulators" are characterized by a topological invariant as in quantum Hall states and Z_2 topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the 3-sphere to the 2-sphere. This paper gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model.Comment: 4 pages, 2 figures; published versio
    • …
    corecore