2,953 research outputs found

    Conventional Superconductivity in Fe-Based Pnictides: the Relevance of Intra-Band Electron-Boson Scattering

    Full text link
    Various recent experimental data and especially the large Fe-isotope effect point against unconventional pairings, since the large intra-band impurity scattering is strongly pair-breaking for them. The strength of the inter-band impurity scattering in some single crystals may be strong and probably beyond the Born scattering limit. In that case the proposed s(+-) pairing (hole(h)- and electron(el)-gaps are of opposite signs) is suppressed but possibly not completely destroyed. The data imply that the intra-band pairing in the h- and in the el-band, which are inevitably due to some nonmagnetic el-boson interaction (EBI), must be taken into account. EBI is either due to phonons (EPI) or possibly due to excitons (EEI), or both are simultaneously operative. We discuss their interplay briefly. The large Fe-isotope effect favors the EPI and the s(+) pairing (the h- and el-gaps are in-phase).Comment: 7 pages, no figures, explanations and argumentations improved, references adde

    Spin polarization of the magnetic spiral in NaCu_2O_2, as seen by NMR

    Full text link
    The incommensurate (IC) spin ordering in quasi-1D edge-shared cuprate NaCu_2O_2 has been studied by ^{23}Na nuclear magnetic resonance spectroscopy in an external magnetic field near 6 Tesla applied along the main crystallographic axes. The NMR lineshape evolution above and below T_N\approx12 K yields a clear signature of an IC static modulation of the local magnetic field consistent with a Cu^{2+} spin spiral polarized in the bc-plane rather than in the ab-plane as reported from earlier neutron diffraction data.Comment: 5 pages, 4 figure

    Exact one- and two-particle excitation spectra of acute-angle helimagnets above their saturation magnetic field

    Full text link
    The two-magnon problem for the frustrated XXZ spin-1/2 Heisenberg Hamiltonian and external magnetic fields exceeding the saturation field Bs is considered. We show that the problem can be exactly mapped onto an effective tight-binding impurity problem. It allows to obtain explicit exact expressions for the two-magnon Green's functions for arbitrary dimension and number of interactions. We apply this theory to a quasi-one dimensional helimagnet with ferromagnetic nearest neighbor J1 < 0 and antiferromagnetic next-nearest neighbor J2 > 0 interactions. An outstanding feature of the excitation spectrum is the existence of two-magnon bound states. This leads to deviations of the saturation field Bs from its classical value Bs(classical) which coincides with the one-magnon instability. For the refined frustration ratio |J2/J1|> 0.374661 the minimum of the two-magnon spectrum occurs at the boundary of the Brillouin zone. Based on the two-magnon approach, we propose general analytic expressions for the saturation field Bs, confirming known previous results for one-dimensional isotropic systems, but explore also the role of interchain and long-ranged intrachain interactions as well as of the exchange anisotropy.Comment: 21 pages, 6 Figures. submitted to Phys. Rev.

    Theoretical de Haas-van Alphen Data and Plasma Frequencies of MgB2 and TaB2

    Full text link
    The de Haas-van Alphen-frequencies as well as the effective masses for a magnetic field parallel to the crystallographic c-axis are calculated within the local spin density approximation (LSDA) for MgB2 and TaB2. In addition, we analyze the plasma frequencies computed for each Fermi surface sheet. We find a large anisotropy of Fermi velocities in MgB2 in difference to the nearly isotropic behavior in TaB2. We compare calculations performed within the relativistic non-full potential augmented-spherical-wave (ASW) scheme and the scalar-relativistic full potential local orbital (FPLO) scheme. A significant dependence for small cross sections on the bandstructure method is found. The comparison with the first available experimental de Haas-van Alphen-data by Yelland et al. (Ref. 19) shows deviations from the electronic structure calculated within both L(S)DA approaches although the cross section predicted by FPLO are closer to the experimental data. The elucidation of the relevant many-body effects beyond the standard LDA is considered as a possible key problem to understand the superconductivity in MgB2.Comment: Typos corrected, 3references added. Extended and corrected version of S. Elgazzar et al., Solid State Comm. v. 121, 99 (2002). 7pages, 4figures, AIP Conference Proc. "Correlated Electron Systems and High-Tc Superconductors" (ed. F. Mancini) (October 2001, Salerno, Italy
    corecore