3,335 research outputs found

    The F-GAMMA program: Multi-frequency study of Active Galactic Nuclei in the Fermi era. Program description and the first 2.5 years of monitoring

    Get PDF
    To fully exploit the scientific potential of the Fermi mission, we initiated the F-GAMMA program. Between 2007 and 2015 it was the prime provider of complementary multi-frequency monitoring in the radio regime. We quantify the radio variability of gamma-ray blazars. We investigate its dependence on source class and examine whether the radio variability is related to the gamma-ray loudness. Finally, we assess the validity of a putative correlation between the two bands. The F-GAMMA monitored monthly a sample of about 60 sources at up to twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series analysis on the first 2.5-year dataset to obtain variability parameters. A maximum likelihood analysis is used to assess the significance of a correlation between radio and gamma-ray fluxes. We present light curves and spectra (coherent within ten days) obtained with the Effelsberg 100-m and IRAM 30-m telescopes. All sources are variable across all frequency bands with amplitudes increasing with frequency up to rest frame frequencies of around 60 - 80 GHz as expected by shock-in-jet models. Compared to FSRQs, BL Lacs show systematically lower variability amplitudes, brightness temperatures and Doppler factors at lower frequencies, while the difference vanishes towards higher ones. The time scales appear similar for the two classes. The distribution of spectral indices appears flatter or more inverted at higher frequencies for BL Lacs. Evolving synchrotron self-absorbed components can naturally account for the observed spectral variability. We find that the Fermi-detected sources show larger variability amplitudes as well as brightness temperatures and Doppler factors, than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1 GeV fluxes at a significance level better than 3sigma, implying that gamma rays are produced very close to the mm-band emission region.Comment: Accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysics (18 pages, 9 figures

    On the helium content of Galactic globular clusters via the R parameter

    Full text link
    We estimate the empirical R parameter in 26 Galactic Globular Clusters covering a wide metallicity range, imaged by WFPC2 on board the HST. The improved spatial resolution permits a large fraction of the evolved stars to be measured and permits accurate assessment of radial populaton gradients and completeness corrections. In order to evaluate both the He abundance and the He to metal enrichment ratio, we construct a large set of evolutionary models by adopting similar metallicities and different He contents. We find an absolute He abundance which is lower than that estimated from spectroscopic measurements in HII regions and from primordial nucleosynthesis models. This discrepancy could be removed by adopting a C12O16 nuclear cross section about a factor of two smaller than the canonical value, although also different assumptions for mixing processes can introduce systematical effects. The trend in the R parameter toward solar metallicity is consistent with an upper limit to the He to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap

    HST astrometry in the 30 Doradus region: II. Runaway stars from new proper motions in the Large Magellanic Cloud

    Full text link
    We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our pilot archival study. We demonstrate that a relatively short epoch difference of 3 years is sufficient to reach a \sim0.1 mas yr1^{-1} level of precision or better. A number of stars have relative proper motions exceeding a 3-sigma error threshold, representing a mixture of Milky Way denizens and 17 potential LMC runaway stars. Based upon 183 VFTS OB-stars with the best proper motions, we conclude that none of them move faster than \sim0.3 mas yr1^{-1} in each coordinate -- equivalent to \sim70 km s1^{-1}. Among the remaining 351 VFTS stars with less accurate proper motions, only one candidate OB runaway can be identified. We rule out any OB star in our sample moving at a tangential velocity exceeding \sim120 km s1^{-1}. The most significant result of this study is finding 10 stars over wide range of masses, which appear to be ejected from the massive star cluster R136 in the tangential plane to angular distances from 3535^{\prime\prime} out to 407407^{\prime\prime}, equivalent to 8-98 pc. The tangential velocities of these runaways appear to be correlated with apparent magnitude, indicating a possible dependence on the stellar mass.Comment: 45 pages (in referee format), 12 figures, 3 tables. Submitted to AJ. Comments are welcom

    The Far-Infrared Properties of Spatially Resolved AKARI Observations

    Full text link
    We present the spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification (PV) phase of the mission. We extracted reliable point sources matched with IRAS point source catalogue. By comparing IRAS and AKARI fluxes, we found that the flux measurements of some IRAS sources could have been over or underestimated and affected by the local background rather than the global background. We also found possible candidates for new AKARI sources and confirmed that AKARI observations resolved IRAS sources into multiple sources. All-Sky Survey observations are expected to verify the accuracies of IRAS flux measurements and to find new extragalactic point sources.Comment: 11 pages, 7 figures, accepted publication in PASJ AKARI special issu

    Effect of pinning and driving force on the metastability effects in weakly pinned superconductors and the determination of spinodal line pertaining to order-disorder transition

    Get PDF
    We explore the effect of varying drive on metastability features exhibited by the vortex matter in single crystals of 2H-NbSe2_2 and CeRu2_2 with varying degree of random pinning. An optimal balance between the pinning and driving force is needed to view the metastability effects in typically weakly pinned specimen of low temperature superconductors. As one uses samples with larger pinning in order to differentiate the response of different metastable vortex states, one encounters a new phenomena, viz., the second magnetization peak (SMP) anomaly prior to the PE. Interplay between the path dependence in the critical current density and the non-linearity in the electromagnetic response determine the metastability effects seen in first and the third harmonic response of the ac susceptibility across the temperature regions of the SMP and the PE. The limiting temperature above which metastability effects cease can be conveniently located in the third harmonic data, and the observed behavior can be rationalized within the Beans Critical State model. A vortex phase diagram showing the different vortex phases for a typically weakly pinned specimen has been constructed via the ac susceptibility data in a crystal of 2H-NbSe2_2 which shows the SMP and the PE anomalies. The phase space of coexisting weaker and stronger pinned regions has been identified. It can be bifurcated into two parts, where the order and disorder dominate, respectively. The former part continuously connects to the reentrant disordered vortex phase pertaining to the small bundle pinning regime, where the vortices are far apart, interaction effects are weak and the polycrystalline form of flux line lattice prevails.Comment: Submitted to the Special Volume on Vortex State Studies, Pramana J. Phy

    Composite fermion theory of collective excitations in fractional quantum Hall effect

    Full text link
    The low energy neutral excitations of incompressible fractional quantum Hall states are called collective modes or magnetic excitons. This work develops techniques for computing their dispersion at general filling fractions for reasonably large systems. New structure is revealed; in particular, the collective mode at 1/3 is found to possess several minima, with the energy of the principal minimum significantly smaller than the earlier estimate. \pacs{73.40.Hm, 73.20.Dx, 73.20.Mf}Comment: 4 pages, 3 postscript figure

    Notes on Supersymmetry Enhancement of ABJM Theory

    Full text link
    We study the supersymmetry enhancement of ABJM theory. Starting from a N=2{\cal N}=2 supersymmetric Chern-Simons matter theory with gauge group U(2)×\timesU(2) which is a truncated version of the ABJM theory, we find by using the monopole operator that there is additional N=2{\cal N}=2 supersymmetry related to the gauge group. We show this additional supersymmetry can combine with N=6{\cal N}=6 supersymmetry of the original ABJM theory to an enhanced N=8{\cal N}=8 SUSY with gauge group U(2)×\timesU(2) in the case k=1,2k=1,2. We also discuss the supersymmetry enhancement of the ABJM theory with U(NN)×\timesU(NN) gauge group and find a condition which should be satisfied by the monopole operator.Comment: 23 pages, no figure, minor corrections, version to appear in JHE

    Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays

    Full text link
    We study the dependence of the transport properties of square Josephson Junctions arrays with the direction of the applied dc current, both experimentally and numerically. We present computational simulations of current-voltage curves at finite temperatures for a single vortex in the array (Ha2/Φ0=f=1/L2Ha^2/\Phi_0=f=1/L^2), and experimental measurements in 100×1000100\times1000 arrays under a low magnetic field corresponding to f0.02f\approx0.02. We find that the transverse voltage vanishes only in the directions of maximum symmetry of the square lattice: the [10] and [01] direction (parallel bias) and the [11] direction (diagonal bias). For orientations different than the symmetry directions, we find a finite transverse voltage which depends strongly on the angle ϕ\phi of the current. We find that vortex motion is pinned in the [10] direction (ϕ=0\phi=0), meaning that the voltage response is insensitive to small changes in the orientation of the current near ϕ=0\phi=0. We call this phenomenon orientational pinning. This leads to a finite transverse critical current for a bias at ϕ=0\phi=0 and to a transverse voltage for a bias at ϕ0\phi\not=0. On the other hand, for diagonal bias in the [11] direction the behavior is highly unstable against small variations of ϕ\phi, leading to a rapid change from zero transverse voltage to a large transverse voltage within a few degrees. This last behavior is in good agreement with our measurements in arrays with a quasi-diagonal current drive.Comment: 9 pages, 9 figure

    Spin effects in single electron tunneling

    Full text link
    An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctions -- single-barrier planar junctions or more complex ones. In this review we present and discuss recent theoretical results on electron and spin transport through ferromagnetic mesoscopic junctions including two or more barriers. Such systems are also called ferromagnetic single-electron transistors. We start from the situation when the central part of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport characteristics reveal then single-electron charging effects, including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic transistors based on semiconductor quantum dots and large molecules (especially carbon nanotubes) are also considered. The main emphasis is placed on the spin effects due to spin-dependent tunnelling through the barriers, which gives rise to spin accumulation and tunnel magnetoresistance. Spin effects also occur in the current-voltage characteristics, (differential) conductance, shot noise, and others. Transport characteristics in the two limiting situations of weak and strong coupling are of particular interest. In the former case we distinguish between the sequential tunnelling and cotunneling regimes. In the strong coupling regime we concentrate on the Kondo phenomenon, which in the case of transport through quantum dots or molecules leads to an enhanced conductance and to a pronounced zero-bias Kondo peak in the differential conductance.Comment: topical review (36 figures, 65 pages), to be published in J. Phys.: Condens. Matte

    Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU

    Full text link
    A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding and genetic operators adapted to this problem. Our GA is improved by generated initial solution with hubs located at middle nodes. The obtained experimental results are compared with the best known solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms of solution quality and time execution and it allows hitherto unsolved problems to be solved
    corecore