1,133 research outputs found

    Many-Polaron Effects in the Holstein Model

    Full text link
    We derive an effective polaronic interaction Hamiltonian, {\it exact to second order in perturbation}, for the spinless one-dimensional Holstein model. The small parameter is given by the ratio of the hopping term (tt) to the polaronic energy (g2ω0g^2 \omega_0) in all the region of validity for our perturbation; however, the exception being the regime of extreme anti-adiabaticity (t/ω00.1t/\omega_0 \le 0.1) and small electron-phonon coupling (g<1g < 1) where the small parameter is t/ω0t/\omega_0. We map our polaronic Hamiltonian onto a next-to-nearest-neighbor interaction anisotropic Heisenberg spin model. By studying the mass gap and the power-law exponent of the spin-spin correlation function for our Heisenberg spin model, we analyze the Luttinger liquid to charge-density-wave transition at half-filling in the effective polaronic Hamiltonian. We calculate the structure factor at all fillings and find that the spin-spin correlation length decreases as one deviates from half-filling. We also extend our derivation of polaronic Hamiltonian to dd-dimensions.Comment: Content changed. Accepted in Phys. Rev.

    Zeeman effect in superconducting two-leg ladders: irrational magnetization plateaus and exceeding the Pauli limit

    Full text link
    The effect of a parallel magnetic field on superconducting two-leg ladders is investigated numerically. The magnetization curve displays an irrational plateau at a magnetization equal to the hole density. Remarkably, its stability is fundamentally connected to the existence of a well-known magnetic resonant mode. Once the zero-field spin gap is suppressed by the field, pairs acquire a finite momentum characteristic of a Fulde-Ferrell-Larkin-Ovchinnikov phase. In addition, S^z=0 triplet superconducting correlations coexist with singlet ones above the irrational plateau. This provides a simple mechanism in which the Pauli limit is exceeded as suggested by recent experiments.Comment: 4 pages, 6 figure

    Magnetic Determination of Hc2H_{c2} under Accurate Alignment in (TMTSF)2_2ClO4_4

    Full text link
    Cantilever magnetometry has been used to measure the upper critical magnetic field Hc2H_{c2} of the quasi-one dimensional molecular organic superconductor (TMTSF)2_2ClO4_4. From simultaneous resistivity and torque magnetization experiments conducted under precise field alignment, Hc2H_{c2} at low temperature is shown to reach 5T, nearly twice the Pauli paramagnetic limit imposed on spin singlet superconductors. These results constitute the first thermodynamic evidence for a large Hc2H_{c2} in this system and provide support for spin triplet pairing in this unconventional superconductorComment: Submitted July 1, 2003, Accepted December 9, 2003, Physical Review Letter

    Optical observations of NEA 162173 (1999 JU3) during the 2011-2012 apparition

    Full text link
    Near-Earth asteroid 162173 (1999 JU3) is a potential target of two asteroid sample return missions, not only because of its accessibility but also because of the first C-type asteroid for exploration missions. The lightcurve-related physical properties of this object were investigated during the 2011-2012 apparition. We aim to confirm the physical parameters useful for JAXA's Hayabusa 2 mission, such as rotational period, absolute magnitude, and phase function. Our data complement previous studies that did not cover low phase angles. With optical imagers and 1-2 m class telescopes, we acquired the photometric data at different phase angles. We independently derived the rotational lightcurve and the phase curve of the asteroid. We have analyzed the lightcurve of 162173 (1999 JU3), and derived a synodic rotational period of 7.625 +/- 0.003 h, the axis ratio a/b = 1.12. The absolute magnitude H_R = 18.69 +/- 0.07 mag and the phase slope of G = -0.09 +/- 0.03 were also obtained based on the observations made during the 2011-2012 apparition.Comment: 4 pages, 3 figure

    Phase transition and phase diagram at a general filling in the spinless one-dimensional Holstein Model

    Full text link
    Among the mechanisms for lattice structural deformation, the electron-phonon interaction mediated Peierls charge-density-wave (CDW) instability in single band low-dimensional systems is perhaps the most ubiquitous. The standard mean-field picture predicts that the CDW transition occurs at all fillings and all values of the electron-phonon coupling gg and the adiabaticity parameter t/ω0t/\omega_0. Here, we correct the mean-field expression for the Peierls instability condition by showing that the non-interacting static susceptibility, at twice the Fermi momentum, should be replaced by the dynamic one. We derive the Luttinger liquid (LL) to CDW transition condition, {\it exact to second order in a novel blocked perturbative approach}, for the spinless one-dimensional Holstein model in the adiabatic regime. The small parameter is the ratio gω0/tg \omega_0/t. We present the phase diagram at non-half-filling by obtaining the surprising result that the CDW occurs in a more restrictive region of a two parameter (g2ω0/tg^2 \omega_0/t and t/ω0t/\omega_0) space than at half-filling.Comment: Made changes in the appendices and also in notatio

    Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF)2ClO4

    Get PDF
    We report the magnetic field-amplitude and field-angle dependence of the superconducting onset temperature Tc_onset of the organic superconductor (TMTSF)2ClO4 in magnetic fields H accurately aligned to the conductive ab' plane. We revealed that the rapid increase of the onset fields at low temperatures occurs both for H // b' and H // a, irrespective of the carrier confinement. Moreover, in the vicinity of the Pauli limiting field, we report a shift of a principal axis of the in-plane field-angle dependence of Tc_onset away from the b' axis. This feature may be related to an occurrence of Fulde-Ferrell-Larkin-Ovchinnikov phases.Comment: 4 pages, 4 figure

    Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime

    Full text link
    We present comparative studies of the orientation effect of a strong magnetic field on the interlayer resistance of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 samples characterized by different crystal quality. We find striking differences in their behavior which is attributed to the breakdown of the coherent charge transport across the layers in the lower quality sample. In the latter case, the nonoscillating magnetoresistance background is essentially a function of only the out-of-plane field component, in contradiction to the existing theory.Comment: 4 pges, 3 figure

    Vacuum type of SU(2) gluodynamics in maximally Abelian and Landau gauges

    Get PDF
    The vacuum type of SU(2) gluodynamics is studied using Monte-Carlo simulations in maximally Abelian (MA) gauge and in Landau (LA) gauge, where the dual Meissner effect is observed to work. The dual Meissner effect is characterized by the coherence and the penetration lengths. Correlations between Wilson loops and electric fields are evaluated in order to measure the penetration length in both gauges. The coherence length is shown to be fixed in the MA gauge from measurements of the monopole density around the static quark-antiquark pair. It is also shown numerically that a dimension 2 gluon operator A^+A^-(s) and the monopole density has a strong correlation as suggested theoretically. Such a correlation is observed also between the monopole density and A^2(s)= A^+A^-(s) + A^3A^3(s) condensate if the remaining U(1) gauge degree of freedom is fixed to U(1) Landau gauge (U1LA). The coherence length is determined numerically also from correlations between Wilson loops and A^+A^-(s) and A^2(s) in MA + U1LA gauge. Assuming that the same physics works in the LA gauge, we determine the coherence length from correlations between Wilson loops and A^2(s). Penetration lengths and coherence lengths in the two gauges are almost the same. The vacuum type of the confinement phase in both gauges is near to the border between the type 1 and the type 2 dual superconductors.Comment: 13 pages, 22 figures, RevTeX 4 styl

    Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors

    Full text link
    We propose a mechanism by which the paramagnetic pair-breaking effect is largely reduced in superconductors with coexisting antiferromagnetic long- range and short-range orders. The mechanism is an extension of the Jaccarino and Peter mechanism to antiferromagnetic conductors, but the resultant phase diagram is quite different. In order to illustrate the mechanism, we examine a model which consists of mobile electrons and antiferromagnetically correlated localized spins with Kondo coupling between them. It is found that for weak Kondo coupling, the superconductivity occurs over an extraordinarily wide region of the magnetic field including zero field. The critical field exceeds the Chandrasekhar and Clogston limit, but there is no lower limit in contrast to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo coupling, both the low-field superconductivity and a field-induced superconductivity occur. Possibilities in hybrid ruthenate cuprate superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn. Vol.71, No.3 (2002

    Quantum Limit in a Parallel Magnetic Field in Layered Conductors

    Full text link
    We show that electron wave functions in a quasi-two-dimensional conductor in a parallel magnetic field are always localized on conducting layers. Wave functions and electron spectrum in a quantum limit, where the "sizes" of quasi-classical electron orbits are of the order of nano-scale distances between the layers, are determined. AC infrared measurements to investigate Fermi surfaces and to test Fermi liquid theory in Q2D organic and high-Tc materials in high magnetic fields, H = 10-45 T, are suggested.Comment: 9 pages, 2 figures; Submitted to Physical Review Letter
    corecore