49,932 research outputs found

    Achieving precise mechanical control in intrinsically noisy systems

    Get PDF
    How can precise control be realized in intrinsically noisy systems? Here, we develop a general theoretical framework that provides a way of achieving precise control in signal-dependent noisy environments. When the control signal has Poisson or supra-Poisson noise, precise control is not possible. If, however, the control signal has sub-Poisson noise, then precise control is possible. For this case, the precise control solution is not a function, but a rapidly varying random process that must be averaged with respect to a governing probability density functional. Our theoretical approach is applied to the control of straight-trajectory arm movement. Sub-Poisson noise in the control signal is shown to be capable of leading to precise control. Intriguingly, the control signal for this system has a natural counterpart, namely the bursting pulses of neurons-trains of Dirac-delta functions-in biological systems to achieve precise control performance

    Small-Recoil Approximation

    Get PDF
    In this review we discuss a technique to compute and to sum a class of Feynman diagrams, and some of its applications. These are diagrams containing one or more energetic particles that suffer very little recoil in their interactions. When recoil is completely neglected, a decomposition formula can be proven. This formula is a generalization of the well-known eikonal formula, to non-abelian interactions. It expresses the amplitude as a sum of products of irreducible amplitudes, with each irreducible amplitude being the amplitude to emit one, or several mutually interacting, quasi-particles. For abelian interaction a quasi-particle is nothing but the original boson, so this decomposition formula reduces to the eikonal formula. In non-abelian situations each quasi-particle can be made up of many bosons, though always with a total quantum number identical to that of a single boson. This decomposition enables certain amplitudes of all orders to be summed up into an exponential form, and it allows subleading contributions of a certain kind, which is difficult to reach in the usual way, to be computed. For bosonic emissions from a heavy source with many constituents, a quasi-particle amplitude turns out to be an amplitude in which all bosons are emitted from the same constituent. For high-energy parton-parton scattering in the near-forward direction, the quasi-particle turns out to be the Reggeon, and this formalism shows clearly why gluons reggeize but photons do not. The ablility to compute subleading terms in this formalism allows the BFKL-Pomeron amplitude to be extrapolated to asymptotic energies, in a unitary way preserving the Froissart bound. We also consider recoil corrections for abelian interactions in order to accommodate the Landau-Pomeranchuk-Migdal effect.Comment: 21 pages with 4 figure

    Isolated Galaxies versus Interacting Pairs with MaNGA

    Full text link
    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population (\sim2 Gyr) than in the outskirts (\sim7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.Comment: 7 pages, 2 figures. Proceedings of the EWASS-2015 special session Sp3, accepted for publication in Special Issue "3D View on Interacting and Post-Interacting Galaxies from Clusters to Voids" of open access journal "Galaxies

    A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object

    Get PDF
    A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac

    Superstructure-induced splitting of Dirac cones in silicene

    Full text link
    Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K') points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.Comment: 6 pages, 3 figure

    TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity

    Full text link
    We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden theories in the large extra dimension model in which the gravitons propagate in the (4+n)-dimensional bulk, while the gauge and matter fields are confined to the four-dimensional world. The corrections to the two-point Green's functions of the gauge and matter fields from the exchanges of virtual Kaluza-Klein gravitons are calculated in the gauge independent background field method. In the framework of effective field theory, we show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects contains a TeV scale Lee-Wick partner of every gauge and matter field as extra degrees of freedom in the theory. Thus the large extra dimension model of gravity provides a natural mechanism to the emergence of these exotic particles which were recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
    corecore