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Abstract. How can precise control be realized in intrinsically noisy systems?
Here, we develop a general theoretical framework that provides a way of
achieving precise control in signal-dependent noisy environments. When the
control signal has Poisson or supra-Poisson noise, precise control is not possible.
If, however, the control signal has sub-Poisson noise, then precise control is
possible. For this case, the precise control solution is not a function, but a rapidly
varying random process that must be averaged with respect to a governing
probability density functional. Our theoretical approach is applied to the control
of straight-trajectory arm movement. Sub-Poisson noise in the control signal
is shown to be capable of leading to precise control. Intriguingly, the control
signal for this system has a natural counterpart, namely the bursting pulses
of neurons—trains of Dirac-delta functions—in biological systems to achieve
precise control performance.
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1. Introduction

Many mechanical and biological systems are controlled by signals that contain noise. This
poses a problem. The noise apparently corrupts the control signal, thereby preventing precise
control. However, precise control can be realized, despite the occurrence of noise, as has been
demonstrated experimentally in biological systems. For example, in neural-motor control, as
reported in [1], the movement error is believed to be mainly due to inaccuracies of the neural-
sensor system, and not associated with the neural-motor system.

The minimum-variance principle proposed in [2, 3] has greatly influenced the theoretical
study of biological computation. Assuming that the magnitude of the noise in a system depends
strongly on the magnitude of the signal, the conclusion of [2, 3] is that a biological system is
controlled by minimizing the execution error.

A key feature of the control signal in a biological system is that biological computation
often only takes on a finite number of values. For example, ‘bursting’ neuronal pulses in the
neural-motor system control seem very likely to have only three states, namely inactive, excited
and inhibited. This kind of signal (neuronal pulses) can be abstracted as a dynamic trajectory
that is zero for most of the time, but intermittently takes a very large value. Generally, this kind
of signal looks like a train of irregularly spaced Dirac-delta functions. In this work, we shall
theoretically investigate the way in which signals in realistic biological systems are associated
with precise control performance. We shall use bursting neuronal pulse trains as a prototypical
example of this phenomenon.

In a biological system, noise is believed to be inevitable and essential; it is part of a
biological signal and, for example, the magnitude of the noise typically depends strongly on
the magnitude of the signal [2, 3]. One characteristic of the noise in a system is the dispersion
index, α, which describes the statistical regularity of the control signal. When the variance in
the control signal is proportional to the 2αth power of the mean control signal, the dispersion
index of the control noise is said to be α. It was shown in [2, 3] and elsewhere (e.g. [4, 5])
that an optimal solution of analytic form can be found when the stochastic control signal is
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supra-Poisson, i.e. when α > 0.5. However, the resulting control is not precise and a non-zero
execution error arises. In recent papers, a novel approach was proposed to find the optimal
solution for control of a neural membrane [6], and a model of saccadic eye movement [7]. It
was shown that if the noise of the control signal is more regular than a Poisson process (i.e. if it is
sub-Poisson, with α < 0.5), then the execution error can be shown to reduce towards zero [6, 7].
This work employed the theory of Young measures [13, 14] and involved a very specific sort
of solution (a ‘relaxed optimal parameterized measure solution’). We note that many biological
signals are more regular than a Poisson process: e.g. within in vivo experiments, it has often been
observed that neuronal pulse signals are sub-Poisson in character (α < 0.5) [15, 16]. However,
in [6, 7], only a one-dimensional linear model was studied in detail. Thus the results and methods
cannot be applied to the control of general dynamical systems. The work of [6, 7], however,
leads to a much harder problem: the general mathematical link between the regularity of the
signal’s noise and the control performance that can be achieved.

In this work we establish some general mathematical principles linking the regularity of
the noise in a control signal with the precision of the resulting control performance, for general
nonlinear dynamical systems of high dimension. We establish a general theoretical framework
that yields precise control from a noisy controller using modern mathematical tools. The control
signal is formulated as a Gaussian (random) process with a signal-dependent variance. Our
results show that if the control signal is more regular than a Poisson process (i.e. if α < 0.5), then
the control optimization problem naturally involves solutions with a specific singular character
(parameterized measure optimal solutions), which can achieve precise control performance. In
other words, we show how to achieve results where the variance in control performance can be
made arbitrarily small. This is in clear contrast to the situation where the control signals are
Poisson or more random than Poisson (α > 0.5), where the optimal control signal is an ordinary
function, not a parameterized measure, and the variance in control performance does not
approach zero. The new results can be applied to a large class of control problems in nonlinear
dynamical systems of high dimension. We shall illustrate the new sort of solutions with an
example of neural-motor control, given by the control of straight-trajectory arm movements,
where neural pulses act as the control signals. We show how pulse trains may be realized in
nature, which lead towards the optimization of control performance.

2. Model and mathematical formulation

To establish a theoretical approach to the problem of noisy control, we shall consider the
following general system:

dx

dt
= a(x(t), t) + b(x(t), t)u(t), (1)

where t is time (t > 0), x(t) = [x1(t), . . . , xn(t)]T is a column vector of ‘coordinates’ describing
the state of the system to be controlled (a T-superscript denotes transpose) and u(t) =

[u1(t), . . . , um]T is a column vector of the signals used to control the x system. The dynamical
behaviour of the x system, in the absence of a control signal, is determined by a(x, t) and
b(x, t), where a(x, t) consists of n functions: a(x, t) = [a1(x, t), . . . , an(x, t)]T and b(x, t) is an
n × m ‘gain matrix’ with elements bi j(x, t). The system (1) is a generalization of the dynamical
systems studied in the literature [2, 3, 6, 7].
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As stated above, the control signal, u(t), contains noise. We follow Harris’s work [2, 3] on
signal-dependent noise theory by modelling the components of the control signal as

ui(t) = λi(t) + ζi(t), (2)

where λi(t) is the mean control signal at time t of the i th component of u(t) and all noise
(randomness) is contained in ζi(t). In particular, we take the ζi(t) to be independent Gaussian
white noises obeying E[ζi(t)] = 0, E[ζi(t)ζ j(t ′)] = σi(t)σ j(t ′)δ(t − t ′)δi j , where E [·] denotes
expectation, δ(·) is the Dirac-delta function and δi j is the Kronecker delta. The quantities σi(t),
which play the role of standard deviations of the ζi(t), are taken to explicitly depend on the
mean magnitudes of the control signals:

σi(t) = κi |λi(t)|
α, (3)

where κi is a positive constant and α is the dispersion index of the control process (described
above).

Thus, we can formulate the dynamical system, equation (1), as a system of Itô diffusion
equations:

dx = A(x, t, λ) dt + B(x, t, λ) dWt , (4)

where (i) Wt = [W1,t , . . . , Wm,t ]T contains m independent standard Wiener processes; (ii) the
quantity A(x, t, λ) denotes the column vector [A1(x, t, λ), . . . , An(x, t, λ)]T, the i th component
of which has the form Ai(x, t, λ) = ai(x, t) +

∑m
j=1 bi j(x, t)λ j ; and (iii) the quantity B(x, t, λ)

is the matrix, the (i, j)th element of which is given by Bi j(x, t, λ) = bi j(x, t)κ j |λ j |
α, where

i = 1, . . . , n and j = 1, . . . , m. We make the assumption that the range of each λi is bounded:
−MY 6 λi 6 MY with MY a positive constant. Let � = [−MY, MY]m be the region where the
control signal takes values, with m denoting the m-order Cartesian product. Let 4 be the state
space of x . In this paper we assume it is bounded.

Let us now introduce the function φ(x, t) = [φ1(x, t), . . . , φk(x, t)]T, which represents the
objective that is to be controlled and optimized. For example, for a linear output we can take
φ(x, t) = Cx for some k × n matrix C ; in the case that we control the magnitude of x , we can
take φ(x, t) =‖x‖2; we may even allow dependence on time, for example if the output decays
exponentially with time, we can take exp(−γ t)x(t) for some constant γ > 0.

The aim of the control problem we consider here is (i) to ensure the expected trajectory
of the objective φ(x(t), t) reaches a specified target at a given time, T , and (ii) to minimize
the execution error accumulated by the system, during the time, R, that the system is required
to spend at the ‘target’ [2, 3, 6–11]. In the present context, we take the motion to start at time
t = 0 and subject to the initial condition x(0). The target has coordinates z(t) and we need to
choose the controller, u(t), so that for the time interval T 6 t 6 T + R the expected state of
the objective φ(x(t), t) of the system satisfies E[φ(x(t), t)] = z(t). The accumulated execution
error is

∫ T +R
T

∑
i var (φi(x(t), t)) dt and we require this to be minimized.

Statistical properties of x(t) can be written in terms of p(x, t), the probability density of
the state of the system (4) at time t , which satisfies the Fokker–Planck equation

∂p(x, t)

∂t
= L ◦ p , p(x, 0) = δ(x − x(0)), t ∈ [0, T + R] (5)
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with

L ◦ p = −

n∑
i=1

∂[ai(x, t) +
∑m

j=1 bi j(x, t)λ j(t))p(x, t)]

∂xi

+
1

2

n∑
i, j=1

∂2
{
∑m

k=1 κ2
k bik(x, t)b jk(x, t)|λk(t)|2α p(x, t)}

∂xi∂x j
.

Three important quantities are the following:

(A) The accumulated execution error:
∫ T +R

T

∫
4

‖φ(x, t) − z(t)‖2 p(x, t) dx dt .

(B) The expectation condition on x(t):
∫

4
φ(x, t)p(x, t) dx = z(t), for all t in the interval

T 6 t 6 R + T .

(C) The dynamical equation of p(x, t) described as (5).

3. Young measure optimal solutions

To illustrate the idea of the solutions we introduce here, namely Young measure optimal
solutions, we provide a simple example. Consider the situation where x and u are one-
dimensional functions, while a(x, t) = px , b(x, t) = q , κ = 1, z(t) = z0 and φ(x, t) = x . Thus
(1) becomes

dx

dt
= px + qu. (6)

This has the solution x(t) = x0 exp(pt) +
∫ t

0 exp(p(t − s))qλ(s) ds +
∫ t

0 exp(p(t − s))
q|λ(s)|α dWs . Thus, its expectation is E(x(t)) = x0 exp(pt) +

∫ t
0 exp(p(t − s))qλ(s) ds

and its variance is var(x(t)) =
∫ t

0 exp(2p(t − s))q2
|λ(s)|2α ds. The solution of the optimization

problem is the minimum of the following functional:

H [λ] =

∫ T +R

T

∫ t

0
exp(2p(t − s))q2

|λ(s)|2α ds dt

+
∫ T +R

T

{
γ (t)[x0 exp(pt) +

∫ t

0
exp(p(t − s))qλ(s) ds − z0]

}
dt

=

∫ T +R

T
{[g(t)|λ(t)|2α

− f (t)λ(t)] + µ(t)} dt (7)

with

g(t) =


q2

2p [exp(2p(T + R − t)) − exp(2p(T − t))], t 6 T,

q2

2p [exp(2p(T + R − t)) − 1], T + R > t > T,

f (t) =

−
∫ T +R

T qγ (s) exp(p(s − t)) ds, t 6 T,

−
∫ T +R

t qγ (s) exp(p(s − t)) ds, T + R > t > T,

µ(t) = γ (t)[x0 exp(pt) − z0],

for some integrable function γ (t), which serves as a Lagrange auxiliary multiplier.
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Figure 1. Illustration of possible minimum points of the function gi(t)|ξi |
2α

−

fi(t)ξi in hi(t, ξi) with respect to the variable ξi with gi(t) = 1, fi(t) = 2 and
MY = 10 for α = 0.8 > 0.5 (blue curves) and α = 0.25 < 0.5 (red curves): (a)
plots of gi(t)|ξi |

2α
− fi(t)ξi with respect to ξi for α = 0.8 (blue) and α = 0.25

(red) and their minimum points; (b) inner plot of gi(t)|ξi |
2α

− fi(t)ξi for ξi ∈

[0, 0.2] to show that ξi = 0 does have a minimum point for α = 0.25 (red); (c)
plots of the derivatives of gi(t)|ξi |

2α
− fi(t)ξi with respect to ξi for α = 0.8 (blue)

and α = 0.25 (red).

In the general case, we minimize (A) using (B) and (C) as constraints via the introduction
of appropriate x and t dependent Lagrange multipliers. This leads to a functional of the mean
control signal, H [λ], with the form H [λ] =

∫ T +R
T h(t, λ(t)) dt (see below and appendix A).

Let us use ξ = [ξ1, . . . , ξm]T to denote the value of λ(t) at a given time of t , i.e. ξ = λ(t); ξ will
serve as a variable of the Young measure (see below). We find

h(t, ξ) =

m∑
i=1

[gi(t)|ξi |
2α

− fi(t)ξi ] + z(t), (8)

where gi(t), fi(t) and z(t) are functions with respect to t but are independent of the variable ξ .
The abstract Hamiltonian minimum (maximum) principle [12] provides a necessary

condition for the optimal solution of minimizing (A) with (B) and (C), which is composed
of the points in the domain of definition of λ, namely �, that minimize the function h(t, ξ)

in (8), at each time, t , which is named Hamiltonian integrand. This principle tells us that the
optimal solution should pick values of the minimum of h(t, ξ) with respect to ξ , for each t .

If the control signal is supra-Poisson or Poisson, namely the dispersion index α > 0.5, for
each t ∈ [0, T + R], the Hamiltonian integrand h(t, ξ) is convex (or semi-convex) with respect
to ξ and so has a unique minimum point with respect to each ξi . So, the optimal solution is a
deterministic function of time: for each t0, λi(t0) can be regarded as the picking value at the
minimum point of h(t, ξ) for t = t0.

When α < 1/2, namely when the control signal is sub-Poisson, it follows that h(t, ξ)

is no longer a convex function. Figure 1 shows the possible minimum points of the term
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Table 1. Summary of the possible minimum points of (8).

gi (t) > 0 gi (t) < 0

α > 0.5 One point in [−MY, MY] {MY} or {−MY}

α < 0.5 {0, MY} or {0, −MY} {MY} or {−MY}

gi(t)|ξi |
2α

− fi(t)ξi with gi(t) > 0 and fi(t) > 0. From the assumption that the range of each
ξi is bounded, namely −MY 6 ξi 6 MY, it then directly follows, from the form of h(t, ξ), that
the value of ξi that optimizes h(t, ξ) is not unique; there are three possible minimum values:
−MY, 0 and MY, as shown in table 1. So, no explicit function λ(t) exists that is the optimal
solution of the optimization problem (A)–(C). However, an infimum of (8) does exist.

Proceeding intuitively, we first make an arbitrary choice of one of the three optimal values
for ξi (namely one of −MY, 0 and MY) and then average over all possible choices at each
time. With ηt,i(ξ) the probability density of ξi at time t , the average is carried out using the
distribution (probability density functional) η[λ] ∝

∏
t,iηt,i(ξ) which represents independent

choices of the control signal at each time. Thus, for example, the functional H [λ] becomes
functionally averaged over λ(·) according to

∫ T +R
T

(∫
h(t, λ)η[λ]d[λ]

)
dt . The optimization

problem has thus shifted from determining a function (as required when α > 1/2) to determining
a probability density functional, η[λ]. This intuitively motivated procedure is confirmed by
optimization theory—and this leads us to Young measure theory.

Let us spell it out in a mathematical way. Young measure theory [13, 14] provides a solution
to an optimization problem where a solution, which was a function, becomes a linear functional
of a parameterized measure. By way of explanation, a function, λ(t), yields a single value for
each t , but a parameterized measure {ηt(·)} yields a set of values on which a measure (i.e. a
weighting) ηt(·) is defined for each t . A functional with respect to a parameterized measure
can be treated in a similar way to a solution that is an explicit function, by averaging over the
set of values of the parameterized measure at each t . In detail, a functional of the form H [λ] =∫ T

0 h(t, λ(t)) dt , of an explicit function, λ(t), can have its definition extended to a parameterized

measure ηt(·), namely H [η] =
∫ T

0

∫
�

h(t, ξ)ηt(dξ) dt . In this sense, an explicit function can be
regarded as a special solution that is a ‘parameterized concentrated measure’ (i.e. involving
a Dirac-delta function) in that we can write H [λ] =

∫ T
0

∫
�

h(t, ξ)δ(ξ − λ(t)) dξ dt . Thus, we
can make the equivalence between the explicit function λ(t) and a parameterized concentrated
measure {δ(ξ − λ(t))}t and then replace this concentrated measure, when appropriate, by a
Young measure.

Technically, a Young measure is a class of parameterized measures that are relatively
weak*-compact such that the Lebesgue function space can be regarded as its dense subset in
the way mentioned above. Thus, by enlarging the solution space from the function space to the
(larger) Young measure space, we can find a solution in the larger space and the minimum value
of the optimization problem, in the Young measure space, coincides with the infimum in the
Lebesgue function space.

For any function r(x, t, ξ), we denote a symbol · as the inner product of r(x, t, ξ) over the
parameterized measure ηt(dξ), by averaging r(x, t, ξ) with respect to ξ via ηt(·). That is we
define r(x, t, ξ) · ηt to represent

∫
�

r(x, t, ξ)ηt(dξ). In this way we can rewrite the optimization

New Journal of Physics 15 (2013) 063012 (http://www.njp.org/)

http://www.njp.org/


8

problem (A)–(C) as
min

η

∫ T +R
T

∫
4

‖φ(x, t) − z(t)‖2 p(x, t) dx dt

s.t. ∂p(x,t)
∂t = [(L · η) ◦ p](x, t), on [0, T ] × 4, p(x, 0) = p0(x),

x ∈ 4, t ∈ [0, T + R],∫
4

φ(x, t)p(x, t) dx = z(t), on [T, T + R], η ∈ Y.

(9)

Here, Y denotes the Young measure space, which is defined on the state space 4 with t ∈

[0, T + R], while η = {ηt(·)} denotes a shorthand for the Young measure associated with control;
(L · η) ◦ p is defined as

[L · η] ◦ p =

∫
�

L(t, x, ξ) ◦ p(x, t)ηt(dξ)

=

∫
�

−

n∑
i=1

∂[Ai(x, t, ξ)p(x, t)]

∂xi

+
1

2

n∑
i, j=1

∂2
{[B(x, t, ξ)BT(x, t, ξ)]i j p(x, t)}

∂xi∂x j

 ηt(dξ)

=

∫
�

−

n∑
i=1

∂[ai(x, t) +
∑m

j=1 bi j(x, t)ξ j)p(x, t)]

∂xi

+
1

2

n∑
i, j=1

∂2
{
∑m

k=1 κ2
k bik(x, t)b jk(x, t)|ξk|

2α p(x, t)}

∂xi∂x j

 ηt(dξ).

So, we can study the relaxation problem (9) instead of the original one, (A)–(C). We assume
that the constraints in (9) admit a non-empty set of λ(t), which guarantees that the problem (9)
has a solution. We also assume the existence and uniqueness of the Cauchy problem of the
Fokker–Planck equation (5).

The abstract Hamiltonian minimum (maximum) principle (theorem 4.1.17 [12]) also
provides a similar necessary condition for the Young measure solution of (9), if it admits a
solution, that is composed of the points in � which minimize the integrand of the underlying
‘abstract Hamiltonian’. By employing variational calculus with respect to the Young measure,
we can derive the form (8) for the Hamiltonian integrand. See appendix A for details.

Via this principle, the problem conceptively reduces to finding the minimum points of
h(t, ξ). From table 1, for a sufficiently large MY, it can be seen that if α < 0.5, then the minimum
points for each t with gi(t) > 0 may be TWO points {0, MY} or {−MY, 0}. Hence, in the case
of α < 0.5, the optimal solution of (9) is a measure on {MY, 0} or {−MY, 0}. This implies that
the optimal solution of (9) should have the form ηt(·) = η1,t(·)×, . . . , ηm,t(·), where × stands
for the Cartesian product, and each ηi,t we adopt is a measure on {−MY, 0, MY}:

ηi,t(·) = µi(t)δMY(·) + νi(t)δ−MY(·) + [1 − µi(t) − νi(t)]δ0(·), (10)

where µi(t) and νi(t) are non-negative weight functions. The optimization problem corresponds
to the determination of µi(t) and νi(t). Averaging with respect to η corresponds to the optimal
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control signal when the noise is sub-Poisson (α < 0.5). This assignment of a probability density
for the solution at each time is known in the mathematical literature as a Young measure [12–14].
For all i and t , the weight functions satisfy (i) µi(t) + νi(t)6 1 and (ii) µi(t)νi(t) = 0 (owing to
the properties mentioned above that h(t, ξi) cannot simultaneously have both MY and −MY as
optimal).

Consider the simple one-dimensional system (6). We shall provide the explicit form of the
optimal control signal u(t) as a Young measure. Taking expectation for both sides in (6), we
have

dE (x)

dt
= pE(x) + qλ(t).

Since we only minimize the variance in [T, T + R] for some T > 0 and R > 0, the control signal
u(t) for t ∈ [0, T ) is picked so that the expectation of x(t) can reach z0 at time t = T . After some
simple calculations, we find a deterministic λ(t) as follows:

λ(t) =
z0 − x0 exp(pT )

T q
exp(p(−T + t)), t ∈ [0, T ],

such that E(x(T )) = z0. Then we pick λ(t) = −pz0/q for t ∈ [T, T + R] such that
dE(x(t))/dt = 0 for all t ∈ [T, T + R]. Hence, E(x(t)) = z0 for all t ∈ [T, T + R]. In the interval
[T, T + R], as discussed above, for a sufficiently large MY, the optimal solution of λ(t) should
be a Young measure that picks values in {0, MY, −MY}. To sum up, we can construct the optimal
λ(t) as follows:

ηt(·) =


δλ(t)(·), t ∈ [0, T ),

δMY(·)
−pz0

q MY
+ δ0(·)[1 + pz0

q MY
], t ∈ [T, T + R] if − pz0/q > 0 or

δ−MY(·)
pz0

q MY
+ δ0(·)[1 −

pz0

q MY
], t ∈ [T, T + R] if pz0/q > 0.

It can be seen that in [0, T ), ηt(·) is in fact a deterministic function the same as λ(t).

4. Precise control performance

We now illustrate the control performance when the noise is sub-Poisson. For the general
nonlinear system (1), we cannot obtain an explicit expression for the probability density
functional η[λ], equation (10), or the value of the variance (execution error). However, we
can adopt a non-optimal probability density functional that illustrates the property of the exact
system, that the execution error becomes arbitrarily small when the bound of the control signal,
MY, becomes arbitrarily large. In the simple case (6), we note that if there is a û(t), such that
E(x(t)) = z(t), then the variance becomes, expressed by the Young measure η̂(·),

var(x(t)) =

∫ t

0

∫ MY

−MY

exp(2p(t − s))q2
|ξ |

2αη̂(dξ) ds

=

∫ t

0
exp(2p(t − s))q2 M2α

Y

|û(s)|

MY
ds,

which converges to zero as MY → ∞, due to α < 0.5. That is, the minimized execution error
can be arbitrarily small if the bound of the control signal, MY, becomes sufficiently large.
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In fact, this phenomenon holds for general cases. The non-optimal probability density
functional is motivated by assuming that there is a deterministic control signal û(t) that controls
the dynamical system

dx̂

dt
= A(x̂, t, û(t)), (11)

which is the original system (1), with the noise removed. The deterministic control signal û(t)
causes x̂(t) to precisely achieve the target trajectory x̂(t) = z(t) for T 6 t 6 T + R.

Then, we add the noise with the signal-dependent variance: σi = κi |λi |
α with some α < 0.5,

which leads to a stochastic differential equation, dx = A(x, t, λ(t)) dt + B(x, t, λ(t)) dWt . The
non-optimal probability density that is appropriate for time t , namely η̂t,i(ξ), is constructed to
have a mean over the control values {−MY, 0, MY}, which equals û(t). This probability density
is

η̂i,t(λi) =
|ûi(t)|

MY
δσ(t)MY(λi) +

(
1 −

|ûi(t)|

MY

)
δ0(λi), (12)

where σ(t) = sign(ûi(t)) and, by definition, ûi(t) =
∫ MY

−MY
λi η̂i,t(λi) dλi . We establish in

appendix B that the expectation condition ((B) above) holds asymptotically when MY → ∞,

which shows that the non-optimal probability density functional is appropriately ‘close’ to the
optimal functional. The accumulated execution error associated with the non-optimal functional
is estimated as

min
η

√∫ T +R

T
var[x(t))] dt = O

(
1

M1/2−α

Y

)
(13)

and, in this way, optimal performance of control, with sub-Poisson noise, can be seen to become
precise as MY is made large. By contrast, if α > 0.5, the accumulated execution error is always
greater than some positive constant.

To gain an intuitive understanding of why the effects of noise are eliminated for α < 0.5,
we discretize the time t into small bins of identical size 1t . Using the ‘noiseless control’
ûi(t), we divide the time bin [t, t + 1t] into two complementary intervals, [t, t + |û(t)|1t/MY]
and [t + |û(t)|1t/MY, t + 1t], and assign λi = σ(t)MY for the first interval and λi = 0 for
the second. When 1t → 0, the effect of the control signal λi(t) on the system approaches
that of ûi(t), although λi(t) and ûi(t) are quite different. The variance of the noise in the
first interval is κi M2α

Y and is 0 in the second. Hence, the overall noise effect of the bin is
σ 2

i =
κi |ûi (t)|

MY
· M2α

Y = κi |ûi(t)|M
2α−1
Y . Remarkably, this tends to zero as MY → ∞ if α < 1/2

(i.e. for sub-Poisson noise). The discretization presented may be regarded as a formal stochastic
realization of the probability density functional (Young measure) adopted. The interpretation
above can be verified in a rigorous mathematical way. See appendix B for details.

5. Application and example

Let us now consider an application of this work: the control of straight-trajectory arm
movement, which has been widely studied [8–11] and applied to robotic control. The dynamics
of such structures are often formalized in terms of coordinate transformations. Nonlinearity
arises from the geometry of the joints. The change in spatial location of the hand that results
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H=(x
1
(t),x

2
(t))

Targetθ
1

θ
2

Figure 2. Illustration of arm control. The arm is composed of three points (P , Q
and H ), where P is fixed and the others are not, and two arms (upper arm P Q
and forearm Q H ). Button H is to reach some given target (red cross) by moving
the front- and back arms.

from bending the elbow depends not only on the amplitude of the elbow movement, but also on
the state of the shoulder joint.

For simplicity, we ignore gravity and viscous forces, and only consider the movement of a
hand on a horizontal plane in the absence of friction. Let θ1 denote the angle between the upper
arm and the horizontal direction, and let θ2 be the angle between the forearm and the upper arm
(figure 2). The relation between the position of the hand [x1, x2] and the angles [θ1, θ2] is

θ1 = arctan(x2/x1) − arctan(l2 sin θ2/(l1 + l2 cos θ2)),

θ2 = arccos[(x2
1 + x2

2 − l2
1 − l2

2)/(2l1l2)],

where l1,2 are moments of inertia with respect to the centre of mass, for the upper arm and
the forearm. When moving a hand between two points, a human manoeuvres the arm so as
to make the hand move in roughly a straight line between the end points. We use this to
motivate the model by applying geostatics theory [8]. This implies that the arm satisfies an
Euler–Lagrange equation, which can be described as the following nonlinear two-dimensional
system of differential equations:

N (θ1, θ2)

[
θ̈1

θ̈2

]
+ C(θ1, θ2, θ̇1, θ̇2)

[
θ̇1

θ̇2

]
= γ0

[
Q1

Q2

]
,

θ1(0) = −
π

2
, θ2(0) =

π

2
, θ̇1(0) = θ̇2(0) = 0. (14)

In these equations

N =

[
I1 + m1r 2

1 + m2l2
1 + I2 + m2r 2

2 + 2k cos θ2 I2 + m2r 2
2 + k cos θ2

I2 + m2r 2
2 + k cos θ2 I2 + m2r 2

2

]
,

C = k sin θ2

[
θ̇2 θ̇1 + θ̇2

θ̇1 0

]
, Qi = λi(t) + κ0|λi(t)|

α dWi

dt
,

where mi , li and Ii are respectively the mass, length and moment of inertia with respect to
the centre of mass for the i th part of the system and i = 1 (i = 2) denotes the upper arm
(forearm), r1,2 are the lengths of the upper- and forearms and γ0 is the scale parameter of
the force. Additionally, k = m2l1r2, while λ1,2(t) are the means of two torques Q1,2(t), which
are motor commands to the joints. The torques are accompanied by signal-dependent noises.

New Journal of Physics 15 (2013) 063012 (http://www.njp.org/)

http://www.njp.org/


12

Table 2. Parameters.

Parameters Values

Masses (of the inertia w.r.t. the mass centre) m1 = 2.28 kg, m2 = 1.31 kg
Lengths (of the inertia w.r.t. the mass centre) l1 = 0.305 m, l2 = 0.254 m
Moments (of the inertia w.r.t. the mass centre) I1 = 0.022 kg m2, I2 = 0.0077 kg m2

Lengths of arms r1 = 0.133 m, r2 = 0.109 m
Reach time T = 650 ms (except in figures 7 and 8)
Duration R = 10 ms (except in figures 7 and 8)
Target θ1(T ) = −1, θ2(T ) = π/2
Scale parameter r0 = 1
Noise scale κ0 = 1
Bound of the control signal MY = 20 000, except in figures 1 and 6

and the inset plot of figure 9
Time step 1t = 0.01 ms

All other quantities are fixed parameters. See [8] for full details of the model. The values of the
parameters we pick here are listed in table 2.

For this example, we aim to control the hand such that it starts at t = 0, with the initial
condition of (14), reaches the target at coordinates H = [H1, H2] at time t = T , and then stays
at this target for a time interval of R. We use the minimum-variance principle to determine
the optimal task, which is more advantageous than other optimization criteria to control a
robot arm [8, 11]. Let [x1(t), x2(t)] be the Cartesian coordinates of the hand that follow from
the angles [θ1(t), θ2(t)]. The minimum-variance principle determines minλ1,λ2

∫ T +R
T [var(x1(t)) +

var(x2(t))] dt , subject to the constraint that E[x1(t), x2(t)] = [H1, H2] for T 6 t 6 T + R with
−MY 6 λi 6 MY. Despite not being in possession of an explicit analytic solution, we can
conclude that if α > 0.5, the optimization problem results from the unique minimum to the
Hamiltonian integrand and hence yields λ1(t) and λ2(t), which are ordinary functions. However,
if α < 0.5, the optimal solution of the optimization problem follows from a probability density
functional analogous to equation (10) (i.e. a Young measure over λi ∈ {−MY, 0, MY}). Thus,
we can relax the optimization problem via the Young measure as follows:

Qi =

∫ MY

−MY

(ξi + κ0|ξi(t)|
α dWi/dt) · ηi,t(dξ), i = 1, 2,

and 
min
η1,2(·)

∫ T +R
T [var(x1(t))2 + var[x(2(t))2] dt

s.t. E[x1(T ), x2(T )] = [H1, H2], t ∈ [T, T + R],

ξi ∈ [−MY, MY].

(15)

We used Euler’s method to conduct numerical computations, with a time step of 0.01 ms
in (14). This yields a dynamic programming problem (see section 7). Figure 3 shows the means
of the optimal control signals λ̄1,2(t) with α = 0.25 and MY = 20 000:

λ̄i(t) =

∫ MY

−MY

ξηi,t(dξ), i = 1, 2.
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Figure 3. Means of the optimal control signals λ1(t) (blue solid) and λ2 (green
solid) in the straight-trajectory arm movement example with α = 0.25 and MY =

20 000. The blue and red dash vertical lines stand for the start and end time points
of the duration of reaching the target, respectively.

According to the form of the optimal Young measure, the optimal solution should be

ηi,t(ds) =


[

λ̄i (t)
MY

δMY(s) + (1 −
λ̄i (t)
MY

)δ0(s)
]

ds, λ̄i(t) > 0,[
|λ̄i (t)|

MY
δ−MY(s) + (1 −

|λ̄i (t)|
MY

)δ0(s)
]

ds, λ̄i(t) < 0,

δ0(s) ds otherwise.

It can be shown (derivation not given in this work) that in the absence of the noise term,
the arm can be accurately controlled to reach a given target for any T > 0. In this case, figure 4
shows the dynamics of the angles, angle velocities and accelerations, in the controlled system,
without noise. See, in comparison, the dynamical system with noise, whose dynamics of the
angles, angle velocities and accelerations are illustrated in figure 5, and are exactly the same as
those in the case with noise removed. However, the acceleration dynamics of a noisy dynamic
system appear to be discontinuous since the control signals, that have noises and are added
to the right-hand sides of the mechanical equations, are discontinuous (noisy) in a numerical
realization. However, according to the theory of stochastic differential equations [17], equation
(14) has a continuous solution. Hence, these discontinuous acceleration dynamics lead to very
smooth dynamics of velocities and angles, as shown in figure 5.

Figures 6(a) and (b) illustrate that the probability density functional, for this problem,
contains optimal control signals that are similar to neural pulses. Despite the optimal solution
not being an ordinary function when α < 0.5, the trajectories of the angles θ1 and θ2 of
the arm appear to be quite smooth, as shown in figure 5(a), and the target is reached
very precisely if the value of MY is large. By comparison, when α > 0.5 the outcome
has a standard deviation between 4 and 6 cm, which may lead to failure to reach the
target. A direct comparison between the execution error of the cases α = 0.8(> 0.5) and
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Figure 4. Optimal control of the straight-trajectory arm movement model with
parameters listed in table 2. The target is set by θ1(T ) = −1 and θ2(T ) =

π

2 but
without noise: dynamics of the angles (a), angle velocities (b) and accelerations
(c) (blue solid curves for those of θ1 and green solid curves for θ2). The blue and
red dash vertical lines stand for the start and end time points of the duration of
reaching the target.

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

0

2

θ 1,
2 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6
−2

0

2

dθ
1,

2/d
t (b)

0 0.1 0.2 0.3 0.4 0.5 0.6
−20

0

20

d2 θ 1,
2/d

t2

Time (sec)

(c)

Figure 5. Optimal control of the straight-trajectory arm movement model with
noise and the same model parameters as in figure 4 and α = 0.25, MY = 20 000:
dynamics of the angles (a), angle velocities (b) and accelerations (c) (blue solid
curves for those of θ1 and red solid curves for θ2). The blue and red dash vertical
lines stand for the start and end time points of the duration of reaching the target.
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Figure 6. Optimal control signal of the Young measure of the straight-trajectory
arm movement model with noise; illustrations for λ1 (a) and λ2 (b) in discrete
time with MY = 5, where the width of each bar stands for the measure of MY at
each time bin.

α = 0.25(< 0.5) is shown in the supplementary movies (‘Movie 1’ and ‘Movie 2’ available
from stacks.iop.org/NJP/15/063012/mmedia) of arm movements of both cases. Our conclusion
is that a Young measure optimal solution, in the case of sub-Poisson control signals, can realize
a precise control performance even in the presence of noise. However, Poisson or supra-Poisson
control signals cannot realize a precise control performance, despite the existence of an explicit
optimal solution in this case. Thus α < 0.5 significantly reduces execution error compared with
α > 0.5.

With different T (the starting time of reaching the target) and R (the duration of reaching
the target), under sub-Poisson noise, i.e. α < 0.5, the system can be precisely controlled by
optimal Young measure signals with a sufficiently large MY. Since the target is in the reachable
region of the arm, it implies that the original differential system of (14) with the noise removed
can be controlled for any T > 0 and R > 0 [8, 9]. According to the discussion in appendix B
(theorem 2), the execution error can be arbitrarily small when MY is sufficiently large. However,
for a smaller T , the more rapid the control, the larger the means of the control signals. As for the
duration R, by picking the control signals as fixed values (zeros in this example) such that the
velocities keep zeros, the arm will stay at the target for arbitrarily long or short times. Similarly,
with a large MY, the error (variance) of staying at the target can be very small. To illustrate these
arguments, we take T = 100 ms and R = 100 ms for example (all other parameters are the same
as above). Figure 7 shows that the means of the optimal Young measure control signals before
reaching the target have larger amplitudes than those when T = 650 ms, and figure 8 shows that
the arm can be precisely controlled to reach and stay at the target.

The movement error depends strongly on the value of the dispersion index, α, and the
bound of the control signal, MY. Figure 9 indicates a quantitative difference in the execution
error between the two cases α < 0.5 and α > 0.5, if α is close to (but less than) 0.5. The
execution error can be appreciable unless a large MY is used. For example if α = 0.45, as in
figure 9, the square root of the execution error is approximately 0.6 cm when MY = 20 000.
From (13), the error decreases as MY increases, behaving approximately as a power law, as
illustrated in the inner plot of figure 9. The logarithm of the square root of the execution error
is found to depend approximately linearly on the logarithm of MY when α = 0.25, with a slope
close to −0.25, in good agreement with the theoretical estimate (13).
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Figure 7. Means of the optimal control signals λ1(t) (blue solid) and λ2(t)
(green solid) in the straight-trajectory arm movement example with T = 100 s
and R = 100 ms. The blue and red dash vertical lines stand for the start and end
time points of the duration of reaching the target.
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Figure 8. Optimal control of the straight-trajectory arm movement model with
noise with T = 100 and R = 100 ms: dynamics of the angles (a), angle velocities
(b) and accelerations (c) (blue solid curves for those of θ1 and red solid curves
for θ2). The blue and red dash vertical lines stand for the start and end time points
of the duration of reaching the target.

We note that in a biological context, a set of neuronal pulse trains can achieve precise
control in the presence of noise. This could be a natural way to approximately implement
the probability density functional when α < 0.5. All the other parameters are the same as
above (α = 0.25). The firing rates are illustrated in figures 6(a) and (b) and broadly coincide
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Figure 9. Performance of optimal control of the straight-trajectory arm
movement model: relationship between executive error measured by mean
standard variance and dispersion index α with MY = 20 000 and log–log plot
(inner plot) of the relationship between executive error and bound of the Young
measure MY with α = 0.25 where the dash line is a reference line with slope
−1/2 + α = −0.25 , as shown in (13).
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Figure 10. Spiking control of the straight-trajectory arm movement model: (a)
approximation of the first component (u∗

1(t)) of the optimal Young measure
control signal by spike trains; (b) approximation of the second component
(u∗

2(t)) of the optimal Young measure control signal by spike trains; (c) and
(d) approximation of the optimal control signal Q1,2 by spike trains of a set of
neurons.

with the probability density functional we have discussed. In particular, at each time t , the
probability ηi,t can be approximated by the fraction of the neurons that are firing, with the mean
firing rates equal to the means of the control signals (see section 7). The approximations of
the components of the noisy control signals are shown in figures 10(a) and (b), respectively.
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Figures 10(c) and (d) illustrate such an implementation of the optimal solution by neuronal
pulse trains. Using the pulse trains as control signals, we can realize precise movement
control. We enclose two videos ‘Movie 3’ and ‘Movie 4’ (available from stacks.iop.org/
NJP/15/063012/mmedia) to demonstrate the efficiency of the control by pulse trains with two
different targets. As they show, the targets are precisely accessed by the arm. We point out that
the larger the ensemble, the more precise the control performance, because a large number of the
neurons in an ensemble can theoretically lead to a large MY as mentioned above, which results
in an improvement of the approximation of a Young measure and decreases the execution error
as stated in (13).

We note that these kinds of patterns of pulse trains have been widely reported in
experiments, for example, the synchronous neural bursting reported in [18]. This may provide
a mathematical rationale for the nervous system to adopt pulse-like signals to realize motor
control.

6. Conclusions

In this paper, we have provided a general mathematical framework for controlling a class
of stochastic dynamical systems with random control signals whose noisy variance can be
regarded as a function of the signal magnitude. If the dispersion index, α, is < 0.5, which is
the case when the control signal is sub-Poisson, an optimal solution of explicit function does
not exist but has to be replaced by a Young measure solution. This parameterized measure
can lead to precise control performance, where the controlling error can become arbitrarily
small. We have illustrated this theoretical result via a widely studied problem of arm movement
control.

In the control problem of biological and robotic systems, large control signals are needed
for rapid movement control [21]. When noise occurs, this will cause imprecision in the control
performance. As pointed out in [9, 22–25], a trade-off should be considered when conducting
rapid control with noise. In this paper, we still use a ‘large’ control signal but with different
contexts. With sub-Poisson noise, we proved that a sufficiently large MY, i.e. a sufficiently
large region of the control signal values, can lead to precise control performance. Hence, a
large region of control signal values plays a crucial role in realizing precise control in noisy
environments, for both ‘slow’ and ‘rapid’ movement control. In numerical examples, the larger
the MY we pick, the smaller the control error, as shown in the inset plot of figure 9 as well
as (13) (theorem 2 in appendix B).

Implementation of the Young measure approach in biological control appears to be a
natural way of achieving precise execution error in the presence of sub-Poisson noise. In
particular, in the neural-motor control example illustrated above, the optimal solution in the
case of α < 0.5 is quite interesting. Assume we have an ensemble of neurons that fire pulses
synchronously within a sequence of non-overlapping time windows, as depicted in figures 6(C)
and (D). We see that the firing neurons yield control signals that are very close, in form, to
the type of Young measure solution. This conclusion may provide a mathematical rationale for
the nervous system to adopt pulse-like trains to realize motor control. Additionally, we point
out that our approach may have significant ramifications in other fields, including robot motor
control and sparse functional estimation, which are issues of our future research.
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7. Methods

7.1. Numerical methods for the optimization solution

We used Euler’s method to conduct numerical computations, with a time step of 1t = 0.01 ms
in (14) with α < 0.5. This yields a dynamic programming problem. First, we divide the time
domain [0, T ] into small time bins with a small size 1t . Then, we regard the process ηi,t in each
time bin [n1t, (n + 1)1t] as a static measure variable. Thus, the solution reduces to finding
two series of non-negative parameters µi,n and νi,n with µi,n + νi,n 6 1 and µi,nνi,n = 0 such
that

λi(t) =


MY, n1t 6 t < (n + µi,n)1t,

−MY, (n + µi,n)1t 6 t < (n + µi,n + νi,n)1t,

0, (n + µi,n + νi,n)1t 6 t < (n + 1)1t.

The approximate solution of the optimization problem requires non-negative µi,n and νi,n that
minimize the final movement errors. We thus have a dynamic programming problem. We should
point out that in the literature, a similar method was proposed to solve the optimization problem
in a discrete system with control signals taking only two values [11, 19, 20]. Thus, the dynamical
system (1) becomes the following difference equations via the Euler method:

xi(k + 1) = xi(k) + 1t
{

ai(x(k), tk) +
m∑

j=1

bi j(x(k), tk)[µ j,k − ν j,k]MY

}

+
m∑

j=1

bi j(x(k), tk)κ j

√
1t(µ j,k + ν j,k)Mα

Yν j , k = 0, 1, 2, . . . ,

where ν j , j = 1, . . . , m, are independent standard Gaussian random variables. We can derive
difference equations for the expectations and variances of x(k), by ignoring the higher order
terms with respect to 1t :

E(xi(k + 1)) = E(xi(k)) + 1t
{

E[a(x(k), tk)] +
m∑

j=1

E[bi j(x(k), tk)][µ j,k − ν j,k]MY

}
× cov(xi(k + 1), xi ′(k + 1))

= cov(xi(k), xi ′(k)) + 1t cov

(
xi ′(k),

{
ai(x(k), tk)

+
m∑

j=1

bi j(x(k), tk)[µ j,k − ν j,k]MY

})

+ 1t cov
(

xi(k),

{
ai ′(x(k), tk) +

m∑
j=1

bi ′ j(x(k), tk)[µ j,k − ν j,k]MY

})

+ 1t
m∑

j=1

cov(bi ′ j(x(k), tk), bi j(x(k), tk))(µ j,k + ν j,k)M2α
Y .
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Thus, equation (9) becomes the following discrete optimization problem:
min

µi,k ,νi,k

∑
k var(φ(x(k), tk))

s.t. E(φ(x(k), tk)) = z(tk), µi,k + νi,k 6 1,

µi,k > 0, νi,k > 0

(16)

with x(k) a Gaussian random vector with expectation E(x(k)) and covariance matrix
cov(x(k), x(k)).

7.2. Neuronal pulse trains approximating Young measure solutions

At each time t , the measure η∗

t can be approximated by the fraction of the neuron ensembles that
are firing. In detail, assume that the means of the optimal control signals are Rt,i(ξ), i = 1, 2,
and there is one ensemble of excitatory neurons and another ensemble of inhibitory neurons. A
fraction of the neurons fire so that the mean firing rates satisfy

λ∗

i (t) = γ {E[Rext
i (t)] − E[Rinh

i (t)]},

where Rext
i (t) and Rinh

i (t) are the firing rates of the excitatory and inhibitory neurons,
respectively, and γ is a scalar factor. In the presence of sub-Poisson noise, the noisy control
signals u∗

i (t) = λ∗

i (t) + ζi(t) are approximated by

u∗

i (t) = γ
[
Rext

i (t) − Rinh
i (t)

]
.

Both ensembles of neurons are imposed with baseline activities, which bound the minimum
firing rates away from zeros, given the spontaneous activities of neurons when no explicit signal
is transferred. A numerical approach involves discretizing time t into small bins of identical size
1t . The firing rates can be easily estimated by averaging the population activities in a time bin.
We have used 400 neurons to control the system, with two ensembles of neurons with equivalent
numbers that approximate the first and second components of the control signal, respectively.
Each neuron ensemble has 200 neurons with 100 excitatory and 100 inhibitory neurons.
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Appendix A. Derivation of formula (8)

Let W be the time-varying p.d.f. p(x, t) that is second-order continuous differentiable with
respect to x and t that is embedded in the Sobolev function space W 2,2; W1 be the function
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space of p(x, t0), regarded as a function with respect to x with a fixed t0; and W2 be the function
space of p(x0, t), regarded as a function with respect to t with a given x0. The spaces W1,2 can
be regarded as being embedded in W . In addition, let Ŵ be the function space where the image
L[W ] is embedded; L be the space of linear operator L, denoted above; L (Z , E) be the space
composed of bounded linear operator from linear space Z to E ; and Z∗ be the dual space of the
linear space Z : Z∗

= L (Z ,R). Furthermore, let Ỹ be the tangent space of the Young measure
space Y: Ỹ = {η − η′ : η, η′

∈ Y}. For simplicity, we do not specify the spaces and just provide
the formalistic algebras, and then the following is similar to chapter 4.3 in [12] with appropriate
modifications.

Define

8(p) =

∫ T +R

T

∫
4

‖φ(x, t) − z(t)‖2 p(x, t) dx dt,

5(p, η) =

(∂p

∂t
− (L · η) ◦ p, p(x, 0) − p0(x)

)
,

J (p) =

∫
4

φ(x, t)p(x, t) dx − z(t). (A.1)

Thus, (9) can be rewritten as{
min

η
8(p)

s.t. 5(p, η) = 0, J (p) = 0.
(A.2)

The Gâteaux differentials of these maps with respect to p(x, t), denoted by ∇p·, are

(∇p8) ◦ ( p̂ − p) =

∫ T +R

T

∫
4

‖φ(x, t) − z(t)‖2[ p̂(x, t) − p(x, t)] dx dt,

(∇p5) ◦ ( p̂ − p) =

(∂( p̂ − p)

∂t
− (L · η) ◦ ( p̂ − p), p̂(x, 0) − p(x, 0)

)
,

(∇p J ) ◦ ( p̂ − p) =

∫
4

φ(x, t)[ p̂(x, t) − p(x, t)] dx

for two time-varying p.d.f.s p̂, p ∈ W . Here, ∇p8 ∈ W ∗, ∇p5 ∈ L (W, Ŵ × W1), ∇p J ∈

L (W, W2). And the differentials of these maps with respect to the Young measure η are

(∇η8) · (η̂ − η) = 0,

(∇η5) · (η̂ − η) = ((L ◦ p) · (η̂ − η), 0),

(∇η J ) · (η̂ − η) = 0

for the two Young measures η̂, η ∈ Y. Here, ∇η8 ∈ Ỹ
∗
, ∇η5 ∈ L (Ỹ, Ŵ × W1) and ∇η J ∈

L (Ỹ, W2)

Then, we are in a position to derive the result of (8) by the following theorem, as a
consequence from theorem 4.1.17 in [12].

Theorem 1. 8 : W → W ∗, 5 : W ×Y→ R and J : W → W2 as defined in (A.1). Assume that
(i) the trajectory of x(t) in (4) is bounded almost surely; (ii) a(x, t), b(x, t) and φ(x, t) are
C2 with respect to (x, t). Let (η∗, p∗) be the optimal solution of (9). Then, there are some
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λ1 ∈ L (Ŵ × W1, W ∗), λ2 = [λ21, λ22]T with λ21 ∈ L (Ŵ , W2) and λ22 ∈ L (W1, , W2) , such
that

λ1 ◦ ∇p5(p∗, η∗) = ∇p8(p∗), λ2 ◦ ∇p5(p∗, η∗) = ∇p J (p∗), (A.3)

and the abstract maximum principle

η∗

t {minima of h(t, ξ) w.r.t ξ} = 1, ∀t ∈ [0, T + R] (A.4)

holds with the ‘abstract Hamiltonian’:

h(t, ξ) = −

∫
4

p∗(x, t)
{ n∑

i=1

Ai(x, t, ξ)
∂µ1

∂xi

+
1

2

n∑
i, j=1

[B(x, t, ξ)B(x, t, ξ)T]i j
∂2µ1

∂xi∂x j

}
dx . (A.5)

Proof. Under the conditions in this theorem, we can conclude that the Fokker–Planck equation
has a unique solution p(η) that is continuously dependent on η from the theory of stochastic
differential equations [17]; 5(·, η) : W → W ∗ is the Fréchet differentiable at p = π(η) because
x(t) is assumed to be almost surely bounded; 5(p, ·) : Y→ W ∗ and J (in fact ∇η J = 0) is
Gâteaux equi-differentiable around p ∈ W because p ∈ W ⊂ W 2,2 with (x, t) bounded5; the
partial differential ∇η5 is weak continuous with respect to η because it is linearly dependent
on η.

In addition, from the existence and uniqueness of the Fokker–Planck equation, ∇p5(p, η) :
W → Im(∇p5(p, η)) ⊂ W̄ × W1 has a bounded inverse. This implies that the following adjoint
equation

µ ◦ ∇p5 = ∇p8 + c(t) ◦ ∇p J

has a solution for p = p(η), denoted by µ. Let µ = [µ1, µ2], which should be a solution of the
following equation:

∂µ1

∂t + (L∗
· η∗) ◦ µ1 = −‖φ(x, t) − z(t)‖2

− c(t)φ(x, t),

µ2(x) = µ1(x, 0),

µ1(x, T + R) = 0, t ∈ [0, T + R], x ∈ 4

(A.6)

with the dual operator L∗ of L (the operator in the back-forward Kolmogorov equation) still
dependent on (x, t) and the value of λ(t) (namely ξ in Young measure):

L∗
◦ q =

n∑
i=1

ai(x, t, ξ)
∂q

∂xi
+

1

2

n∑
i, j=1

[B(x, t, ξ)BT(x, t, ξ)]i j
∂2q

∂xi x j
.

We pick λ1,2(t) with µ1 = λ1 + c(t)λ21 and µ2 = λ1 + c(t)λ22. So λ1,2 should satisfy
equation (A.3). In fact, λ1,2 can be regarded as functions (or generalized functions) with respect
to (x, t).

5 See [12] for details of the definitions of Fréchet differential, Gâteaux equi-differential and partial differential,
which are extended from those of the functional/operator on function space.
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Thus, the conditions of lemma 1.3.16 in [12] can be verified, which implies that the
gradients of the maps 8 and J with respect to η, by regarding p = p(η) from 5(p, η) = 0,
are as follows:

∂8 = ∇η8 − λ1 ◦ ∇η5, ∂ J = ∇η J − λ2 ◦ ∇η5.

From the abstract Hamiltonian minimum principle (theorem 4.1.17 in [12]), applied to each
solution of (9), denoted by η∗, there exists a non-zero function c(t) such that

H(η̃) = ∂8(η∗) · η̃ + 〈c(t), ∂ J (η∗) · η̃〉, ∀η̃ ∈ Y (A.7)

is an ‘abstract Hamiltonian’ with respect to η̃. With the definitions of λ1,2, (A.7) becomes

H(η̃) = ∇η8 · η̃ + c∇η J · η̃ − 〈µ, ∇η5 · η̃〉 = −〈µ, ∇η5 · η̃〉

owing to ∇η8 = ∇η J = 0.
By specifying µ with λ1,2, we have

H(η̃) = − 〈µ, ∇η5 · η̃〉 = −〈µ1, [L ◦ p∗] · η̃〉 = −〈p∗, [L∗
◦ µ1] · η̃〉

= −

∫ T +R

0

∫
4

∫
�

p∗

{ n∑
i=1

ai(x, t, ξ)
∂µ1

∂xi

+
1

2

n∑
i, j=1

[B(x, t, ξ)B(x, t, ξ)T]i j
∂2µ1

∂xi∂x j

}
η̃t(dξ) dx dt,

where p∗ stands for the time-varying density corresponding to the optimal Young measure
solution η∗. From this, letting ξ = λ, we have the ‘abstract Hamiltonian’ in the form of (A.5) as
the Hamiltonian integrand of H(·).

The Hamiltonian abstract minimum (maximum) principle indicates that the optimal Young
measure η∗

t is only concentrated at the minimum points of h(t, ξ) with respect to ξ for each t .
That is, (A.4) holds. This completes the proof. ut

From this theorem, since the variances depend on the magnitude of the signal as described
in (3), removing the terms without ξ , it is equivalent to looking at the minima of ĥ(t, ξ) in the
form of

ĥ(t, ξ) =

m∑
i=1

hi(t, ξi), hi(t, ξi) = gi(t)|ξi |
2α

− fi(t)ξi (A.8)

instead of h(t, ξ), where

fi(t) =

m∑
j=1

∫
4

p∗(x, t)b j i(x, t)
∂µ1

∂xi
dx,

gi(t) = −
κ2

i

2

m∑
j,k=1

∫
4

p∗(x, t)b j i(x, t)bki(x, t)
∂2µ1

∂x j∂xk
dx .

This gives formula (8).
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Appendix B. Derivation of precise control performance (13)

The control performance inequality (13) can be derived from the following theorem:

Theorem 2. Let x̂ be the solution of equation (11) and 0 < α < 0.5. Assume that there
is a positive measurable function κ(t) and a positive constant C1 such that ‖ A(x, t, u) −

A(y, t, u)‖6 κ(t) ‖x − y‖, ‖B(x, t, u)‖2 6 κ(t)
∑m

k=1 |uk|
2α and |φ(x, t) − φ(y, t)|6 C1‖x −

y‖ hold for all x, y ∈ Rn and t > 0. Then, for any non-random initial value, namely x(0) =

E(x(0)), with the non-optimal Young measure (12), we have

(i)
∫ T +R

T ‖E(x(t)) − z(t)‖ → 0;

(ii) minη

√∫ T +R
T var(x) dt = O

(
1

M1/2−α
Y

)
as MY → ∞.

Proof. Comparing the differential equation of x , i.e. (4), and that of x̂ , (11), we have d(x − x̂) =

[A(x, t, û) − A(x̂, t, û)] dt + B(x, t, λ(t)) dWt . And replacing λ(t) with the Young measure
η̂t(·), in the form of (12), from the conditions in this theorem, we have

E‖x(τ ) − x̂(τ )‖2
= E

{ ∫ τ

0
[A(x(t), t, û) − A(x̂(t), t, û)] dt

}2

+ E
{ ∫ τ

0
‖B(x, t, λ)‖2

· η̂t dt
}

6 E
{ ∫ τ

0
κ(t)‖x(t) − x̂(t)‖ dt

}2

+
m∑

k=1

∫ τ

0
κ(t)|λk|

2α
· η̂k,t dt

6

∫ τ

0
κ2(s) ds

∫ τ

0
E‖x(t) − x̂(t)‖2 dt +

m∑
k=1

∫ τ

0

M2α
Y

MY
κ(t)|ûk(t)| dt,

for any τ > 0. By using Grönwall’s inequality, we have∫ T +R

T
E‖x(τ ) − x̂(τ )‖2dτ dt 6

∫ T +R

0
E‖x(τ ) − x̂(τ )‖2dτdt

6

∫ T +R

0
exp

[ ∫ T +R

t

∫ s

0
κ2(τ ) dτ ds

] 1

M1−2α
Y

m∑
k=1

κ(t)|ûk(t)| dt. (B.1)

Note that for 0 < α < 0.5, limMY→∞1/M1−2α
Y = 0 implies that

∫ T +R
T E‖x(τ ) − x̂(τ )‖2 dτ dt =

O(1/M1−2α
Y ) as MY goes to infinity. This proves the second item in this theorem.

In addition,∫ T +R

T
‖E(x(t)) − z(t)‖6

√
R

√
E
∫ T +R

T
{‖x(t) − x̂(t)‖2 dt}

also approaches zero as MY goes to infinity. This proves the first item of the theorem. This
completes the proof. ut

Hence, as MY goes to infinity, the non-optimal solution (12) can asymptotically satisfy the
constraint and the error variance goes to zero as MY goes to infinity. Therefore, the performance
error of the real optimal solution of the optimization problem (9) approaches zero as MY → ∞

in the case of α < 0.5. Furthermore, we can conclude from (B.1) that the execution error,
measured by the standard deviation, can be approximated as (13).
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