350 research outputs found

    Including design in e-manufacturing

    Get PDF
    This paper reviews major issues in the implementation of e-manufacturing, particularly the design aspects. It will examine recent progress, drawing out particular issues that are being addressed. Use will be made of the work by the author and colleagues to devise rule-based design and Internet-based control of machines to illustrate how these developments affect the integrated e-manufacturing environment. A dynamic Simulink model of the way e-manufacture is affected by overall design delays is used to evaluate general solutions for partial and complete e-based companies. These models show how changing to improved designs reduces WI

    Single grain heating due to inelastic cotunneling

    Full text link
    We study heating effects of a single metallic quantum dot weakly coupled to two leads. The dominant mechanism for heating at low temperatures is due to inelastic electron cotunneling processes. We calculate the grain temperature profile as a function of grain parameters, bias voltage, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments.Comment: 4 pages, 3 figures, revtex4, extended and corrected versio

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future

    Impairments in reinforcement learning do not explain enhanced habit formation in cocaine use disorder

    Get PDF
    Rationale Drug addiction has been suggested to develop through drug-induced changes in learning and memory processes. Whilst the initiation of drug use is typically goal-directed and hedonically motivated, over time, drug-taking may develop into a stimulus-driven habit, characterised by persistent use of the drug irrespective of the consequences. Converging lines of evidence suggest that stimulant drugs facilitate the transition of goal-directed into habitual drug-taking, but their contribution to goal-directed learning is less clear. Computational modelling may provide an elegant means for elucidating changes during instrumental learning that may explain enhanced habit formation. Objectives We used formal reinforcement learning algorithms to deconstruct the process of appetitive instrumental learning and to explore potential associations between goal-directed and habitual actions in patients with cocaine use disorder (CUD). Methods We re-analysed appetitive instrumental learning data in 55 healthy control volunteers and 70 CUD patients by applying a reinforcement learning model within a hierarchical Bayesian framework. We used a regression model to determine the influence of learning parameters and variations in brain structure on subsequent habit formation. Results Poor instrumental learning performance in CUD patients was largely determined by difficulties with learning from feedback, as reflected by a significantly reduced learning rate. Subsequent formation of habitual response patterns was partly explained by group status and individual variation in reinforcement sensitivity. White matter integrity within goal-directed networks was only associated with performance parameters in controls but not in CUD patients. Conclusions Our data indicate that impairments in reinforcement learning are insufficient to account for enhanced habitual responding in CUD

    Symplocos buxifolia

    Get PDF
    Symplocos buxifolia is a small tree, endemic to Sabah. The estimated area of occupancy (AOO) and extent of occurrence (EOO) are both 32 km2. Although the AOO is calculated from known existing records, it is considered that the actual AOO may be considerably larger than this due to under sampling. It is found scattered around Mount Kinabalu, and currently facing no major threat to its population. It is assessed as Least Concern. Symplocos buxifolia is endemic to Sabah, Malaysia. It is known from Mount Kinabalu

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Symplocos zizyphoides

    Get PDF
    Symplocos zizyphoides is a treelet, endemic to Sabah. The estimated area of occupancy (AOO) and extent of occurrence (EOO) are both 32 km2. There is no major threat as the species is recorded abundantly in Mount Kinabalu. It is assessed as Least Concern. Symplocos zizyphoides is endemic to Sabah, Malaysia. It is known from Mount Kinabalu, Ranau

    Symplocos deflexa

    Get PDF
    Symplocos deflexa is a small tree, endemic to Sabah. The estimated area of occupancy (AOO) and extent of occurrence (EOO) are 28 km2 and 34.5 km2, respectively. Majority of the records of this species are from Kinabalu Park, a protected area. There is no immediate threat to this species. Hence, it is assessed as Least Concern. Symplocos deflexa is endemic to Sabah, Malaysia. It is known from Tenompok, Mount Kinabalu and the local vicinity, Ranau

    Fibre bundle formulation of nonrelativistic quantum mechanics: I. Introduction. The evolution transport

    Full text link
    We propose a new systematic fibre bundle formulation of nonrelativistic quantum mechanics. The new form of the theory is equivalent to the usual one but it is in harmony with the modern trends in theoretical physics and potentially admits new generalizations in different directions. In it a pure state of some quantum system is described by a state section (along paths) of a (Hilbert) fibre bundle. Its evolution is determined through the bundle (analogue of the) Schr\"odinger equation. Now the dynamical variables and the density operator are described via bundle morphisms (along paths). The mentioned quantities are connected by a number of relations derived in this work. The present first part of this investigation is devoted to the introduction of basic concepts on which the fibre bundle approach to quantum mechanics rests. We show that the evolution of pure quantum-mechanical states can be described as a suitable linear transport along paths, called evolution transport, of the state sections in the Hilbert fibre bundle of states of a considered quantum system.Comment: 26 standard (11pt, A4) LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are required. Revised: new material, references, and comments are added. Minor style chages. Continuation of quan-ph/9803083. For continuation of the this series see http://www.inrne.bas.bg/mathmod/bozhome
    corecore