6,548 research outputs found

    One Dimensional Oxygen Ordering in YBa2Cu3O(7-delta)

    Full text link
    A model consisting of oxygen-occupied and -vacant chains is considered, with repulsive first and second nearest-neighbor interactions V1 and V2, respectively. The statistical mechanics and the diffraction spectrum of the model is solved exactly and analytically with the only assumption V1 >> V2. At temperatures T ~ V1 only a broad maximum at (1/2,0,0) is present, while for ABS(delta - 1/2) > 1/14 at low enough T, the peak splits into two. The simple expression for the diffraction intensity obtained for T << V1 represents in a more compact form previous results of Khachaturyan and Morris[1],extends them to all delta and T/V2 and leads to a good agreement with experiment. [1] A.G.Khachaturyan and J.W.Morris, Jr., Phys.Rev.Lett. 64,76(1990)Comment: 13 pages,Revtex,3 figures available upon request but can be plotted using simple analytical functions,CNEA-CAB 92/04

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Theory of temperature dependence of the Fermi surface-induced splitting of the alloy diffuse-scattering intensity peak

    Full text link
    The explanation is presented for the temperature dependence of the fourfold intensity peak splitting found recently in diffuse scattering from the disordered Cu3Au alloy. The wavevector and temperature dependence of the self-energy is identified as the origin of the observed behaviour. Two approaches for the calculation of the self-energy, the high-temperature expansion and the alpha-expansion, are proposed. Applied to the Cu3Au alloy, both methods predict the increase of the splitting with temperature, in agreement with the experimental results.Comment: 4 pages, 3 EPS figures, RevTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor

    On a Conjecture of Rapoport and Zink

    Full text link
    In their book Rapoport and Zink constructed rigid analytic period spaces FwaF^{wa} for Fontaine's filtered isocrystals, and period morphisms from PEL moduli spaces of pp-divisible groups to some of these period spaces. They conjectured the existence of an \'etale bijective morphism FaFwaF^a \to F^{wa} of rigid analytic spaces and of a universal local system of QpQ_p-vector spaces on FaF^a. For Hodge-Tate weights n1n-1 and nn we construct in this article an intrinsic Berkovich open subspace F0F^0 of FwaF^{wa} and the universal local system on F0F^0. We conjecture that the rigid-analytic space associated with F0F^0 is the maximal possible FaF^a, and that F0F^0 is connected. We give evidence for these conjectures and we show that for those period spaces possessing PEL period morphisms, F0F^0 equals the image of the period morphism. Then our local system is the rational Tate module of the universal pp-divisible group and enjoys additional functoriality properties. We show that only in exceptional cases F0F^0 equals all of FwaF^{wa} and when the Shimura group is GLnGL_n we determine all these cases.Comment: v2: 48 pages; many new results added, v3: final version that will appear in Inventiones Mathematica

    Predicting Crystal Structures with Data Mining of Quantum Calculations

    Full text link
    Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. It is typically addressed with highly accurate quantum mechanical computations on a small set of candidate structures, or with empirical rules that have been extracted from a large amount of experimental information, but have limited predictive power. In this letter, we transfer the concept of heuristic rule extraction to a large library of ab-initio calculated information, and demonstrate that this can be developed into a tool for crystal structure prediction.Comment: 4 pages, 3 pic

    X-Ray-Diffraction Study of Charge-Density-Waves and Oxygen-Ordering in YBa2Cu3O6+x Superconductor

    Full text link
    We report a temperature-dependent increase below 300 K of diffuse superlattice peaks corresponding to q_0 =(~2/5,0,0) in an under-doped YBa_2Cu_3O_6+x superconductor (x~0.63). These peaks reveal strong c-axis correlations involving the CuO_2 bilayers, show a non-uniform increase below \~220 K with a plateau for ~100-160 K, and appear to saturate in the superconducting phase. We interpret this unconventional T-dependence of the ``oxygen-ordering'' peaks as a manifestation of a charge density wave in the CuO_2 planes coupled to the oxygen-vacancy ordering.Comment: 4 pages, 4 figure

    A 4-unit-cell superstructure in optimally doped YBa2Cu3O6.92 superconductor

    Full text link
    Using high-energy diffraction we show that a 4-unit-cell superstructure, q0=(1/4,0,0), along the shorter Cu-Cu bonds coexists with superconductivity in optimally doped YBCO. A complex set of anisotropic atomic displacements on neighboring CuO chain planes, BaO planes, and CuO2 planes, respectively, correlated over ~3-6 unit cells gives rise to diffuse superlattice peaks. Our observations are consistent with the presence of Ortho-IV nanodomains containing these displacements.Comment: Corrected typo in abstrac

    Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    Full text link
    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the tetrahedral sites. This model is investigated by using a three-sublattice mean-field approximation and a simple cluster-variation method. The analysis shows a large variety of phase diagrams when changing the site energy parameter.Comment: 10 twocolumn pages (REVTEX) including 12 PS figure

    Cation- and vacancy-ordering in Li_xCoO_2

    Full text link
    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we have studied the Li/Co ordering in LiCoO_2 and Li-vacancy/Co ordering in CoO_2. We find: (i) A ground state search of the space of substitutional cation configurations yields the (layered) CuPt structure as the lowest-energy state in the octahedral system LiCoO_2 (and CoO_2), in agreement with the experimentally observed phase. (ii) Finite temperature calculations predict that the solid-state order- disorder transitions for LiCoO_2 and CoO_2 occur at temperatures (~5100 K and ~4400 K, respectively) much higher than melting, thus making these transitions experimentally inaccessible. (iii) The energy of the reaction E(LiCoO_2) - E(CoO_2) - E(Li) gives the average battery voltage V of a Li_xCoO_2/Li cell. Searching the space of configurations for large average voltages, we find that CuPt (a monolayer superlattice) has a high voltage (V=3.78 V), but that this could be increased by cation randomization (V=3.99 V), partial disordering (V=3.86 V), or by forming a 2-layer Li_2Co_2O_4 superlattice along (V=4.90 V).Comment: 12 Pages, RevTeX galley format, 5 figures embedded using epsf Phys. Rev. B (in press, 1998

    Modeling the System Parameters of 2M1533+3759: A New Longer-Period Low-Mass Eclipsing sdB+dM Binary

    Full text link
    We present new photometric and spectroscopic observations for 2M 1533+3759 (= NSVS 07826147). It has an orbital period of 0.16177042 day, significantly longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM systems. Spectroscopic analysis of the hot primary yields Teff = 29230 +/- 125 K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution from the secondary is due to the surprisingly strong reflection effect. Light curve modeling produced several solutions corresponding to different values of the system mass ratio, q(M2/M1), but only one is consistent with a core helium burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun. 2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an unusually low mass for an sdB star. SdB stars with masses significantly lower than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were theoretically predicted by Han et al. (2002, 2003), but observational evidence has only recently begun to confirm the existence of such stars. The existence of core helium burning stars with masses lower than 0.40--0.43 Msun implies that at least some sdB progenitors have initial main sequence masses of 1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The secondary is a main sequence M5 star.Comment: 47 pages, 7 figure
    corecore