86 research outputs found
Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms
Thrombus formation in intracranial aneurysms, while sometimes stabilizing lesion growth, can present additional risk of thrombo-embolism. The role of hemodynamics in the progression of aneurysmal disease can be elucidated by patient-specific computational modeling. In our previous work, patient-specific computational fluid dynamics (CFD) models were constructed from MRI data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intraluminal thrombus. In this study, we investigated the effect of increased flow residence time (RT) by modeling passive scalar advection in the same aneurysmal geometries. Non-Newtonian pulsatile flow simulations were carried out in base-line geometries and a new postprocessing technique, referred to as âvirtual inkâ and based on the passive scalar distribution maps, was used to visualize the flow and estimate the flow RT. The virtual ink technique clearly depicted regions of flow separation. The flow RT at different locations adjacent to aneurysmal walls was calculated as the time the virtual ink scalar remained above a threshold value. The RT values obtained in different areas were then correlated with the location of intra-aneurysmal thrombus observed at a follow-up MR study. For each patient, the wall shear stress (WSS) distribution was also obtained from CFD simulations and correlated with thrombus location. The correlation analysis determined a significant relationship between regions where CFD predicted either an increased RT or low WSS and the regions where thrombus deposition was observed to occur in vivo. A model including both low WSS and increased RT predicted thrombus-prone regions significantly better than the models with RT or WSS alone
Factor Xa Generation by Computational Modeling: An Additional Discriminator to Thrombin Generation Evaluation
Factor (f)Xa is a critical enzyme in blood coagulation that is responsible for the initiation and propagation of thrombin generation. Previously we have shown that analysis of computationally generated thrombin profiles is a tool to investigate hemostasis in various populations. In this study, we evaluate the potential of computationally derived time courses of fXa generation as another approach for investigating thrombotic risk. Utilizing the case (nâ=â473) and control (nâ=â426) population from the Leiden Thrombophilia Study and each individual's plasma protein factor composition for fII, fV, fVII, fVIII, fIX, fX, antithrombin and tissue factor pathway inhibitor, tissue factor-initiated total active fXa generation was assessed using a mathematical model. FXa generation was evaluated by the area under the curve (AUC), the maximum rate (MaxR) and level (MaxL) and the time to reach these, TMaxR and TMaxL, respectively. FXa generation was analyzed in the entire populations and in defined subgroups (by sex, age, body mass index, oral contraceptive use). The maximum rates and levels of fXa generation occur over a 10- to 12- fold range in both cases and controls. This variation is larger than that observed with thrombin (3â6 fold) in the same population. The greatest risk association was obtained using either MaxR or MaxL of fXa generation; with an âŒ2.2 fold increased risk for individuals exceeding the 90th percentile. This risk was similar to that of thrombin generation(MaxR OR 2.6). Grouping defined by oral contraceptive (OC) use in the control population showed the biggest differences in fXa generation; a >60% increase in the MaxR upon OC use. FXa generation can distinguish between a subset of individuals characterized by overlapping thrombin generation profiles. Analysis of fXa generation is a phenotypic characteristic which may prove to be a more sensitive discriminator than thrombin generation among all individuals
Ratios of anti-factor Xa to antithrombin activities of heparins as determined in recalcified human plasma
Anti-factor Xa and anti-thrombin activities of unfractionated (UF) and low molecular weight (LMW) heparins have been measured in human plasma and with purified human antithrombin III (ATIII) in the absence and presence of 1-5 mM calcium. The anti-factor Xa and antithrombin activities were measured directly, by assessing the heparin-dependent pseudo-first order rate constants of inactivation of human factor Xa or thrombin. These activities were studied with the 4th International Standard for UF heparin, the 1st International Standard for LMW heparin, CY216, enoxaparin, CY222, and the synthetic pentasaccharide. In plasma, calcium equally well increased the specific anti-factor Xa catalytic activities as compared to purified ATIII. That is, 1.5 mM calcium stimulated the UF standard heparin-catalysed inactivation of factor Xa 2.1-2.4 times. In the presence of the LMW heparins the effect of calcium was smaller (1.3-1.7 times), and in plasma there was no effect of calcium on the pentasaccharide-catalysed inactivation of factor Xa. Thus, the largest effects of calcium in the inactivation reaction of factor Xa is seen with UF standard heparin. Calcium reduced the anti-thrombin activities of all the heparin preparations studied about 1.5 times when purified ATIII was used, although in plasma this effect was less clear. Consequently, in the presence of 1.5 mM calcium the ratio of the anti-factor Xa to the anti-thrombin activities of UF standard heparin approximated those of the LMW heparins. The only exception was CY222, which under all conditions retained anti-factor Xa/anti-thrombin ratios significantly higher than those of UF standard heparin
Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation
TiO2nanostructures with fascinating morphologies like cubes, spheres, and rods were synthesized by a simple microwave irradiation technique. Tuning of different morphologies was achieved by changing the pH and the nature of the medium or the precipitating agent. As-synthesized titania nanostructures were characterized by X-ray diffraction (XRD), UVâvisible spectroscopy, infrared spectroscopy (IR), BET surface area, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Photocatalytic dye degradation studies were conducted using methylene blue under ultraviolet light irradiation. Dye degradation ability for nanocubes was found to be superior to the spheres and the rods and can be attributed to the observed high surface area of nanocubes. As-synthesized titania nanostructures have shown higher photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
- âŠ