89 research outputs found

    Repetitive spinal motor neuron discharges following single transcranial magnetic stimulation: relation to dexterity

    Get PDF
    Transcranial magnetic stimulation allows to study the properties of the human corticospinal tract non-invasively. After a single transcranial magnetic stimulus, spinal motor neurons (MNs) sometimes fire not just once, but repetitively. The biological significance of such repetitive MN discharges (repMNDs) is unknown. To study the relation of repMNDs to other measures of cortico-muscular excitability and to physiological measures of the skill for finely tuned precision movements, we used a previously described quadruple stimulation (QuadS) technique (Z'Graggen et al. 2005) to quantify the amount of repMNDs in abductor digiti minimi muscles (ADMs) on both sides of 20 right-handed healthy subjects. Skillfulness for finger precision movements of both hands was assessed using a finger tapping task. In 16 subjects, a follow-up examination was performed after training of either precision movements (n=8) or force (n=8) of the left ADM. The size of the QuadS response (amplitude and area ratios) was greater in the dominant right hand than in the left hand (QuadS amplitude ratio: 47.1±18.1 versus 37.7±22.0%, Wilcoxon test: P<0.05; QuadS area ratio: 49.7±16.2% versus 36.9±23.0%, Wilcoxon test: P<0.05), pointing to a greater amount of repMNDs. Moreover, the QuadS amplitude and area increased significantly after finger precision training, but not after force training. This increase of repMNDs correlated significantly with the increase in performance in the finger tapping task. Our results demonstrate that repMNDs are related to handedness and therefore probably reflect supraspinal excitability differences. The increase of repMNDs after skills training but not after force training supports the hypothesis of a supraspinal origin of repMND

    Nerve excitability changes in critical illness polyneuropathy

    Get PDF
    Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from −22.3 ± 1.6% to −7.6 ± 3.1% (mean ± SE, P ≈ 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropath

    Muscle velocity recovery cycles in myopathy.

    Get PDF
    OBJECTIVE To understand the pathophysiology of myopathies by using muscle velocity recovery cycles (MVRC) and frequency ramp (RAMP) methodologies. METHODS 42 patients with quantitative electromyography (qEMG) and biopsy or genetic verified myopathy and 42 healthy controls were examined with qEMG, MVRC and RAMP, all recorded from the anterior tibial muscle. RESULTS There were significant differences in the motor unit potential (MUP) duration, the early and late supernormalities of the MVRC and the RAMP latencies in myopathy patients compared to controls (p < 0.05 apart from muscle relatively refractory period (MRRP)). When dividing into subgroups, the above-mentioned changes in MVRC and RAMP parameters were increased for the patients with non-inflammatory myopathy, while there were no significant changes in the group of patients with inflammatory myopathy. CONCLUSIONS The MVRC and RAMP parameters can discriminate between healthy controls and myopathy patients, more significantly for non-inflammatory myopathy. MVRC differences with normal MRRP in myopathy differs from other conditions with membrane depolarisation. SIGNIFICANCE MVCR and RAMP may have a potential in understanding disease pathophysiology in myopathies. The pathogenesis in non-inflammatory myopathy does not seem to be caused by a depolarisation of the resting membrane potential but rather by the change in sodium channels of the muscle membrane

    Nerve excitability changes in critical illness polyneuropathy

    Get PDF
    Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from -22.3 +/- 1.6% to -7.6 +/- 3.1% (mean +/- SE, P approximately 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropathy

    Development and early diagnosis of critical illness myopathy in COVID-19 associated acute respiratory distress syndrome.

    Get PDF
    BACKGROUND The COVID-19 pandemic has greatly increased the incidence and clinical importance of critical illness myopathy (CIM), because it is one of the most common complications of modern intensive care medicine. Current diagnostic criteria only allow diagnosis of CIM at an advanced stage, so that patients are at risk of being overlooked, especially in early stages. To determine the frequency of CIM and to assess a recently proposed tool for early diagnosis, we have followed a cohort of COVID-19 patients with acute respiratory distress syndrome and compared the time course of muscle excitability measurements with the definite diagnosis of CIM. METHODS Adult COVID-19 patients admitted to the Intensive Care Unit of the University Hospital Bern, Switzerland requiring mechanical ventilation were recruited and examined on Days 1, 2, 5, and 10 post-intubation. Clinical examination, muscle excitability measurements, medication record, and laboratory analyses were performed on all study visits, and additionally nerve conduction studies, electromyography and muscle biopsy on Day 10. Muscle excitability data were compared with a cohort of 31 age-matched healthy subjects. Diagnosis of definite CIM was made according to the current guidelines and was based on patient history, results of clinical and electrophysiological examinations as well as muscle biopsy. RESULTS Complete data were available in 31 out of 44 recruited patients (mean [SD] age, 62.4 [9.8] years). Of these, 17 (55%) developed CIM. Muscle excitability measurements on Day 10 discriminated between patients who developed CIM and those who did not, with a diagnostic precision of 90% (AUC 0.908; 95% CI 0.799-1.000; sensitivity 1.000; specificity 0.714). On Days 1 and 2, muscle excitability parameters also discriminated between the two groups with 73% (AUC 0.734; 95% CI 0.550-0.919; sensitivity 0.562; specificity 0.857) and 82% (AUC 0.820; CI 0.652-0.903; sensitivity 0.750; specificity 0.923) diagnostic precision, respectively. All critically ill COVID-19 patients showed signs of muscle membrane depolarization compared with healthy subjects, but in patients who developed CIM muscle membrane depolarization on Days 1, 2 and 10 was more pronounced than in patients who did not develop CIM. CONCLUSIONS This study reports a 55% prevalence of definite CIM in critically ill COVID-19 patients. Furthermore, the results confirm that muscle excitability measurements may serve as an alternative method for CIM diagnosis and support its use as a tool for early diagnosis and monitoring the development of CIM

    TME quality in rectal cancer surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concept of total mesorectal excision has revolutionised rectal cancer surgery. TME reduces the rate of local recurrence and tumour associated mortality. However, in clinical trials only 50% of the removed rectal tumours have an optimal TME quality. Patients: During a period of 36 months we performed 103 rectal resections. The majority of patients (76%; 78/103) received an anterior resection. The remaining patients underwent either abdominoperineal resection (16%; 17/103), Hartmann's procedure (6%; 6/103) or colectomy (2%; 2/103).</p> <p>Results</p> <p>In 90% (93/103) TME quality control could be performed. 99% (92/93) of resected tumours had optimal TME quality. In 1% (1/93) the mesorectum was nearly complete. None of the removed tumours had an incomplete mesorectum. In 98% (91/93) the circumferential resection margin was negative. Major surgical complications occurred in 17% (18/103). 5% (4/78) of patients with anterior resection had anastomotic leakage. 17% (17/103) developed wound infections. Mortality after elective surgery was 4% (4/95).</p> <p>Conclusion</p> <p>Optimal TME quality results can be achieved in all stages of rectal cancer with a rate of morbidity and mortality comparable to the results from the literature. Future studies should evaluate outcome and local recurrence in accordance to the degree of TME quality.</p

    Drought-Adaptation Potential in Fagus sylvatica: Linking Moisture Availability with Genetic Diversity and Dendrochronology

    Get PDF
    <div><h3>Background</h3><p>Microevolution is essential for species persistence especially under anticipated climate change scenarios. Species distribution projection models suggested that the dominant tree species of lowland forests in Switzerland, European beech (<em>Fagus sylvatica</em> L.), might disappear from most areas due to expected longer dry periods. However, if genotypes at the moisture boundary of the species climatic envelope are adapted to lower moisture availability, they can serve as seed source for the continuation of beech forests under changing climates.</p> <h3>Methodology/Principal Findings</h3><p>With an AFLP genome scan approach, we studied neutral and potentially adaptive genetic variation in <em>Fagus sylvatica</em> in three regions containing a dry and a mesic site each (<em>n</em><sub>ind.</sub> = 241, <em>n</em><sub>markers</sub> = 517). We linked this dataset with dendrochronological growth measures and local moisture availabilities based on precipitation and soil characteristics. Genetic diversity decreased slightly at dry sites. Overall genetic differentiation was low (<em>F</em><sub>st</sub> = 0.028) and Bayesian cluster analysis grouped all populations together suggesting high (historical) gene flow. The Bayesian outlier analyses indicated 13 markers with three markers differing between all dry and mesic sites and the others between the contrasting sites within individual regions. A total of 41 markers, including seven outlier loci, changed their frequency with local moisture availability. Tree height and median basal growth increments were reduced at dry sites, but marker presence/absence was not related to dendrochronological characteristics.</p> <h3>Conclusion and Their Significance</h3><p>The outlier alleles and the makers with changing frequencies in relation to moisture availability indicate microevolutionary processes occurring within short geographic distances. The general genetic similarity among sites suggests that ‘preadaptive’ genes can easily spread across the landscape. Yet, due to the long live span of trees, fostering saplings originating from dry sites and grown within mesic sites might increase resistance of beech forests during the anticipated longer dry periods.</p> </div
    • …
    corecore